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ABSTRACT

The conventional theory of linear prediction (LP) is renewed
and extended to form a more flexible algorithm called
generalized linear prediction (GLP). There are three new levels
of generalization available: On the first level (I} the predictor
FIR is replaced with a generalized FIR constructed out of allpass
sections having complex coefficients. On the second level (II)
the allpass filters have distributed coefficients, i.e., they are
unequal, and on the third and the most general level (I1I) the
filter sections may have different characteristics.

The theory of GLP is presented and the algorithm is tested
with speech signals. The results show that GLP works as
desired: nonuniform frequency resolution can be achieved and
the resolution is controlled by the choice of the allpass
parameters. On level I, the angle of the pole-zero-pair of the
allpass sections defines the highest resolution area while the
radius of the pole controls the degree of the resolution
improvement. The GLP prediction error decreases rapidly with
the order of the predictor. Its normalized RMS value falls off
exponentially and its spectral flatness improves efficiently.
On the average the results are clearly better than those of
conventional LP. Levels Il and III are only briely discussed.

1. INTRODUCTION

Linear prediction (LP) is widely applied in speech analysis and
coding. Strube [1] has proposed a frequency warped version of
conventional LP. The warping is realized by replacing the unit
delays of the predictor with first order allpass sections. The
warping leads to nonuniform frequency resolution. The idea of
frequency scale warping was introduced by Oppenheim,
Johnson and Steiglitz [3, 4] in the early 70's. Before that
similar structures were applied by Lee [5] to produce
orthonormal bases like Laguerre, Fourier, and Legendre for
frequency domain filter design. Recently warped LP was further
examined by Laine et al. [2], where the warping was treated
based on the orthogonal FAM- and FAMlet-transforms.

Only two types of warping can be realized by the first order
allpass sections: when the pole of the allpass filter is on the
positive real axis the highest frequency resolution point is
located at zero frequency and, when the pole is on the negative
real axis the highest resolution point is at the folding
frequency. In other words, within this formulation the high
resolution point can not be placed at any frequency of interest.
This problem was also discussed by Oppenheim who proposed
the use of allpass sections having complex coefficients.
However, the idea was not analyzed further in his paper and
even up to now there have been very few publications about
this formulation.

In this paper the first order allpass sections with complex
coefficients are applied to the autocorrelation LP to produce a
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freely movable high resolution point at any desired frequency.
This leads to a predictor filter which is of a generalized FIR type
and which handles complex valued analytic signals. The new
LP formulation is called generalized linear prediction (GLP).

2. GENERALIZED LINEAR PREDICTION

First order allpass sections with complex coefficients have an
average group delay of one sample and their transfer function
consists of a single complex pole inside the unit circle located
at the angle 0 and radius r from the origin (r<1). Each section
also has a single complex zero at the same angle and radius 1/r
from the origin. With a real input signal these filters produce
complex valued outputs, i.e., analytic signals. Frequency
warping is controlled by the locations of the pole and the zero:
the closer they are to the unit circle the stronger is the warping,
and, the angle of these special points control the frequency of
the largest warping (which is equal to the frequency of the
highest resolution). In the following, conventional LP is
modified in order to solve for the complex valued predictor
coefficients. The real part of the predictor output is then used as
a predicted estimate for the real input signal.

Let Ag(z) denote an analytic transfer function (with
complex valued coefficients) of the kP first order allpass filter
section of the predictor. In level II generalization they all may
be different. In the following the most simple case (level I)
where the sections are identical is mainly considered. The
transfer function of the generalized predictor is given by (1):

P k
P(2)= 2 v [TA2) M
k=1 I=1
In (1) predictor coefficients yk are complex valued and p
denotes the total number of filter sections. Now, let x(n)
denote the incoming real valued signal and ri(n) the real part
and ix(n) the imaginary part of the kth section output so that
the output of the section Ax(z) can be given in the form yk(n) =
rk(n) + j ix(n). The predicted value xpre(n) is given as the real
part of the linear combination of the tap outputs (2).

X (1) = RE[S. 74 % 1= 5.ty 1 ()= 5By iy ()
k k=1 k=1 2

Ve = +J By
The mean squared error to be minimized is:
2
E, =Y [x(m) - x,,,(m)]
2 3
= Z[x(n)—— ﬁak r(n)+ ﬁ:Bk ik(")]
n k=1 k=1

To solve for the optimal coefficients vk we first expand (3)
and then set the partial derivatives equal to zero.
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The partial derivatives of the ¢th alpha give:

SE, =Y[2r(n) fak r(n)—=2x(n) r,(n)-
5(1, n k=1 (5)

2r,(n) f_‘,ﬁk ip(n)1=0
k=1

By changing the order of the summations and reordering the
terms we get :

S, 3 r,(n) 1y ()= 5B, T r,(m)iy(m) = T x(n) r, (m)
k=1 n k=1 n n

t=12,..,p (6)

Note that if the signals at section outputs are purely real the
correlation terms between real and imaginary parts equal zero
and (6) reduces to the normal equations [6]. A similar set of
equations is obtained by differentiating (3) with respect to

coefficients By.

$ 0, 3 (n) r(m) = 3By Sis(n) i (n) = 3 x(n) i ()
k=1 n k=1 n n

t=1,2,...,p )
In order to solve for complex coefficients Yk we have to

solve (6) and (7) simultaneously. For further derivation we
rewrite them in matrix notation.

Crr a—criﬂ =Crr

Cia-Cip=cy

In (8) the correlation terms cre(t,k) of the matrix C[rﬁ are

formed by correlating the real signals of the A and & tap
outputs. Correspondingly the elements crj(t.k) of the matrix
C,i are formed by correlating the real signal of the fth tap
output with the imaginary signal of the kth tap output.
Elements cjj(t,k) are obtained by correlating the imaginary
signals of the corresponding outputs. The elements of
correlation vectors cyxr and cxj are solved by correlating the
incoming sequence with the real and imaginary outputs of the
tap sections. Finally, the unknown alphas and betas are solved
from (8).

&=[C,, —C,,' C;l CZ; B (Exr "Cri Cl-l-l Exi)

@®

- y ©
ﬁ =[Cii —C: Cr_rl Cn] (CrT; Cr_rl E,\:r _Exi)

3. SOME FEATURES OF GLP

From equations (9) it is possible to produce three levels of
generalization: On the first level (I) the predictor FIR is
replaced with a generalized FIR constructed of allpass sections
having complex coefficients. On the second level (II) the
allpass filters have distributed coefficients, i.e., they are
unequal, and on the third and the most general level (III) the

filter sections may have different characteristics.

Up to now only level I has been studied in detail. The
second has been explored in some cases and the third only in a
few special cases. On all these levels GLP will produce pole-
zero (ARMA) models for the signal. On level | the model is
limited in the sense that all the poles of the predictor (or all the
zeroes of the spectral model) are located at the same point in the
unit circle (multiple pole/zero). In the cases of level I and III
more complicated models can be produced.

A general feature of GLP is that when the resolution is
improved around some frequency area it is simultaneously
lowered at some other points. In other words, the average
resolution is not changed, but rather the distribution of the
resolution along the frequency axis.

4. EXAMPLES OF GLP ANALYSIS

The level I GLP algorithm was programmed with Mathematica
and was used to analyze Finnish vowel sounds. The vowels
were sampled at 22.25 kHz and quantized to eight bits. The pre-
emphasized incoming signal was windowed and filtered by the
cascaded allpass sections (the generalized FIR structure). The
components of the correlation matrices were then produced by
forming dot products between the analytic tap output signals
and the real incoming one.

The results of the GLP analysis were compared to those
given by classical LP. On the average GLP needs half the order
of LP because the predictor coefficients are complex valued. In
GLP case the results of the analysis depend not only on the
order of the predictor but also on the allpass coefficients used.
This new freedom introduces a new problem: how to choose and
optimize the coefficients? In this study the normalized energy
of the error signal and the spectral flatness of the same were
used to form the criteria. However, in the GLP case the flattness
is not equal over the frequencies but is frequency dependent. In
those areas where the resolution is highest the flatness reaches
its maximum too. In other areas the flatness may be even less
than in the corresponding LP case. In the following, two cases
are considered in more detail: vowels /oe/ and /y/ (vowel /y/
may be considered as a rounded variant of the English vowel
fif).

4.1 Normalized residual RMS value

The most surprising result of the simulations of the GLP
algorithm is related to the behaviour of the normalized RMS
value of the GLP residual. In the LP case this decreases more
slowly when the order of the predictor increases, whereas the
logarithmic RMS value of the GLP residual continues to
decrease linearly (see Fig. 1). Finally, the value approaches the
limit of numeric underflow. With double precision com-
putation (with about 18 decimals) this point was reached with
order 10-13 depending on the parameters of the allpass
sections. Since the spectral model fits well to the Fourier
spectrum up to the underflow point and the flatness improves
too, the behaviour of the residual energy should be a true GLP
related phenomenon and not related to any artifact.

In Fig. 1 the /oe/ vowel was analyzed with allpass
parameters: 0 = 48*xn /256. (corresponds to 2.09 kHz), r = 0.7.
The Oth order predictor means no predictor at all, and the
resulting error is equal to the incoming signal. Thus the
normalized RMS error is one, i.e., 0 dB. When the predictor
has an order higher than four the normalized RMS error will be
divided by 3.236 (-10.2 dB on the log scale) when the order of
the predictor increases by one. The corresponding RMS error

1702



of conventional LP decreses very slowly as seen in the figure.
Further investigations are needed to reveal the reasons for this
large difference between the methods.
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Fig. 1. Log RMS value of the normalized GLP residual (thick
line) as a function of predictor order (0 - 11) compared with the
corresponding LP residual value (thin line). Note that the x-
axis denotes the actual LP order (0 - 22) divided by two.

4.2 Derived model and spectral flatness

The derived GLP model is fitted to the Fourier spectra of the
vowel /oe/ in Fig. 2. The chosen allpass parameters lead to a
high accuracy fit around 2.1 kHz whereas around 8-10 kHz the
fit is not the best possible. Due to the nonuniform resolution
there is a increasing mismatch towards the higher frequencies.
This difference can be corrected by a simple fixed filter the
shape of which depends on the actual allpass coefficients.

] 2 4 6 8 10

Fig. 2. Fourier spectrum of the pre-emphasized vowel /oe/
and the derived GLP model of order 11.

In our case the model should have less energy at higher
frequencies. Correspondingly the derived residual should be
emphasized in the high frequency area. This is clearly seen in
Fig. 3, where the spectra of the derived residual is shown. The
correction needed is about 10 dB.

The spectral flatness of the residual signal was computed
over eight frequency bands (from DC to n*1.39 kHz, n=1, 2,...,
8) in order to investigate the nonuniform frequency resolution
produced by GLP. Fig. 4 shows the derived result in the case of
the vowel /oe/. When the whole band (11.1 kHz) is analyzed we
get the classical flatness measure. The increasing flatness
indicates succeeded modeling and decreasing that the modeling
is in trouble there. In Fig. 4 it can be seen that LP has
problems to model the spectra (decreasing curve) around 3 - 4

kHz, where the fourth formant is located. Both GLP flatness
curves run clearly higher from DC up to 5 - 8 kHz even though
the order of the GLP is less than half of that of the LP (7 vs.
22). The tilting of the produced residual spectra will cause an
additional error in the higher frequencies (decreasing curve).
However, when this tilting is compensated for (GLP-7¢) the
GLP model is comparable with the LP model even in the high
frequency area. When the vowels are analyzed for coding
purposes it is very important that the model fits well in the
frequency band where the most important formants are located
and also where the selectivity of the human auditory system is
high. We can note that these requirements are well achieved by
GLP-7.
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Fig. 3. Spectrum of the GLP residual.
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Fig. 4. Spectral flatness of the GLP and LP residual measured
over eight bands. Vowel /oe/, GLP-7 (thick lines) and LP-22
(thin line) compared. In the case GLP-7c the spectral tilting of
the residual has been corrected.

Fig. 5 shows the GLP-11 model and the corresponding spectra
of the /y/ vowel. In this case the allpass parameters were
changed to: @ = 32*m /256. (corresponds to 1.39 kHz), r = 0.7.
Also here the tilting of the model (and the spectrum of the
residual) is clearly seen. An interesting detail is that now the
model even picks up an additional peak between formants one
and two. This additional peak may be due to a subglottal
resonance. Fig. 6 gives a closer picture about this area. This
type of weak top between two stong formants is extremely
seldom modeled by conventional LP. Due to the fact that the
GLP resolution is improved around just these frequencies it was
able to find this peak.

In the case of the vowel /y/ the spectral flatness is clearly
better with GLP-11 than with LP-22 as seen in Fig. 7. Also
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here the spectral tilting will produce an additional error, which
can be compensated for with a proper filter as discussed above
(compare cases GLP-11c and GLP-11 in Fig. 7).

20
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Fig. 5. Fourier spectrum of the pre-emphasized vowel /y/ and
the derived GLP model of order 11.

0
-2
—4F
-6
-8

-10¢

-12

-14 kHz

0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fig. 6. A possible subglottal resonance at 0.9 kHz modeled
by the GLP model.
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Fig. 7. Spectral flatness measured over eight frequency
bands. Vowel /y/ analyzed with GLP-11 and LP-22.

4.3 Modeling of spectral details

Dealing with the nonuniform spectral resolution of the GLP, a
natural question is: can it easily model spectral details just by
focusing the maximum resolution to the frequency of interest.
In Fig. 8 the GLP is focused to 3.47 kHz (8 = 80 ® /256, r = 0.9)
in the analysis of vowel /oe/. The vowel has a strong formant
just centerd around that frequency. Fourier spectra shows also

some harmonic peaks amplified by the formant. As demon-
strated by Fig. 8 the GLP model picks up the strongest
harmonics at the formant. Outside of this high resolution area
GLP models only approximately the formant locations and
further apart from the high resolution locus the model does not
give any information about the spectral variation (flat
response). However, the general shape of the spectra is still
described by the model. Estimates for positions of the
harmonics can be solved from the GLP model. In this example

the frequency difference between the neigthboring harmonics

are between 115 - 127 Hz. In order to get better estimates, the
model should focus iteratively further to the individual peaks.
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Fig. 8. GLP-11 model focused to the fourth formant of the
loe/ vowel.
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5. DISCUSSION

Generalized linear prediction, as derived and experimented with
in this paper, has proven to own many new useful and
interesting properties. An interesting novelty is that it is able
to model the spectral shape [ocally while at the same time
giving just a hint about the global behaviour of the spectrum.
We are able to imagine many new interesting applications for
the GLP method. In this preliminary report we only weakly
tuched on some of those areas. Future experimentation with
level II and III GLP methods will give even more tools for linear
prediction based signal processing.
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