A FAST ALGORITHM FOR THE TWO-DIMENSIONAL COVARIANCE
METHOD OF LINEAR PREDICTION

S. Lawrence Marple Jr.
Acuson Corp.
Mountain View, CA 94043

ABSTRACT

This paper presents a new fast computational algorithm
for the solution of the least squares normal equations
of the two-dimensional (2-D) covariance method of lin-
ear prediction. The fast algorithm exploits the near-to-
doubly-Toeplitz structure of the normal equations when
expressed in matrix form. This algorithm is useful for
generating high resolution imagery from coherent imag-
ing system in-phase/quadrature (I/Q) data, such as syn-
thetic aperture radar (SAR).

1. CLASSICAL FFT IMAGE GENERATION

The classical imaging algorithm for 2-D coherent
imaging system data z{ni,n;], assumed available over
the rectangular data grid 0 < n; < Ny, 0 < ny < Ny,
is simply the squared magnitude of the 2-D DFT of the

full data array]X(fl, fg)]2 in which the 2-D DFT is

Ny—-1N3-1

N Z Z n1,n2]$n1,n2]

ni=0 ny=0

exp(—j2n[finy ATi + fana AT)) (1)

X(f1,f2) =

and w(ny,ns) is an optional 2-D window function used
to suppress sidelobes (at the expense of broadening the
mainlobe response,thereby decreasing the spatial resolu-
tion) and AT; and AT} are the sampling intervals in the
two dimensions.

However, the classical approach is limited in reso-
lution. To achieve higher resolution in the 2-D image
formed from the coherent 2-D phase data (SNR permit-
ting), one approach is to use 2-D autoregressive (AR)
spectral analysis, which may select least squares linear
prediction techniques to estimate the AR parameters.
The tradeoff one makes, of course, is a significant in-
crease in the computations (relative to the FFT) in ex-
change for the potential resolution enhancement. Thus,
fast algorithms are needed to reduce this additional com-
putational burden.

2. 2-D AR PSD AND LINEAR PREDICTION

To develop the 2-D version of the 2-D AR spectrum
(which forms the image) based on estimation of the 2-D
AR parameters via the 2-D covariance method of linear
prediction, consider the case of a 2-D first-quadrant

1693

(Q1) quarter-plane linear prediction error filter which,
for input 2-D signal z[ny, ns] and [p;, p2]-th order linear
prediction error filter with parameters al(ky, k2] defined

-over 0 < k; < p1 and 0 < ky < po, has the scalar linear
prediction error

P1 P2

=2 2

k1=0k2=0

61[711, TL2 [kl; kZ]x ny —ki,n2 — kZ] (2)

in which a*[0,0] = 1 by definition. In anticipation of
the fast computational algorithm to be presented, we
shall assume that p;, the row dimension, is the fixed
order parameter and ps, the column dimension, is the
variable order parameter. An alternative block vector
representation of the @J; quarter-plane linear prediction
error filter output is

etn1,nz] = a'x[n1, na (3)

where

al=(all0] alfl] ... allp])

is a block vector of block dimension 1 x (p2 + 1) with
vector elements

allpl= (a'0,5] a'{Lp] ... allps,p])
of dimension 1 x (p; + 1) for 0 < p < pa, and
x"[ny,ny] = [x[n1;n2] ..z[ny —pr,nal- -
r[nhnz -Pz] ---33["1 — P1,N2 —Pz]]

is a data vector of dimension (p; +1)(pz +1) x 1. Recall-
ing that the spectral density relationship in 2-D between
input and output signal processes is

Pos(f1, f2) = |H(f1, £2)|* Pa(f1, f2),s (4)

in which H(fy, f2) is the Fourier transform of the system
function relating input and output, and assuming that
el[n1,no] is a white noise process with variance pl =
E{le*[n1, n2]|?} so that z[ni,ns] is a Q1 quarter-plane
two-dimensional autoregressive (2-D AR) process, then
the @, quarter-plane 2-D AR spectrum is given as

Pl(fl) f?) =
ATl ATQ pl
2
| %! 5282 al[ky, ko] exp(—j27(f1 k1 ATy + fo kz ATH))|

0-7803-2431-5/95 $4.00 © 1995 |IEEE

In a similar manner, one can define the @2, @3, and Q4
quarter-plane linear prediction error filter outputs and
their corresponding quarter-plane spectra P2(f1, f2) and

P3(fi1, f2) and P*(f1, f2).
3. 2-D NORMAL EQUATIONS

The 2-D least squares normal equations of the 2-
D covariance method of linear prediction are obtained
by assuming that 2-D data is available only over the in-
tervals 0 < ny < Ny —land 0 < ny < N2 —1,s0
that valid linear prediction errors e‘[n;,n,] for quad-
rants i = 1,2,3,4 can only be formed over the intervals
p1 < ny < Ny—1and ps < ny < Ny —1 without running
off the ends of the data. The total squared error then
becomes

N;—-1 Np—-1

Z Z |e Tll,nz]l

n1=p1 N2=p2
N;—1 Na-1 (5)

(Z Z x[n1, nolx nl,ng]) i

ﬂ1—P1 na2=p32

=a‘'Ra

in which the matrix R of dimension (py + 1)(p2 + 1) x
(p1 + 1)(p2 + 1) has the alternative representations

N;—1 Nx-1

=) 2=

ni=py n2=p2

nl; n2]x [n].) n?]

=XX"
R[0,0] R[O,l] R[O,pQ]
B R[1,0] R[L,1] ... R[l,ps]
Rip2,0] Rlp2,1] ... Rlps,psl
where

Na—1
Rli,jl= Y X[z —i]X"[ns —j]

na=p2z

are matrix elements of dimension (p; +1) x (p1 + 1),

X[p2] Xpz +1] X[N> —1]
X[ps—1 Xipa] X[N; — 2]
X= : : :
XtO] X[1] X[Nz ~p2—1]

is a rectangular block-Toeplitz 2-D data matrix of block
dimension (pa 4+ 1) X (N — p2), and X[k] is defined as

:L‘[pl,k] :L‘[pl-l'l,k] :L‘[Nl —l,k]
:L‘[pl—l,k’] x[pl,k] Z[N1—2,k]
2[0, k] sk ... z[Ny—pi—1 K]

which is a rectangular Toeplitz 2-D data matrix of di-
mension (p; +1) x (N7 —p;). Note that the total squared
error of eq. (5) can be an estlmate of the variance if nor-
malized as p'/(N; — p1)(N2 — p2).

If the total squared error is minimized, it can be
shown that the resulting least squares normal equations
take the form

glgz[pl .00 ... 0 -0 ... 0]
a’R = [0 0 0 0 oo o]
a’R = (o 0 0 0 0 p3)
a'R :[pt 0 0 0 . 0]

Unlike the Toeplitz-block-Toeplitz matrix of the known
2-D autocorrelation case (that is, the 2-D Yule-Walker
equations), the least squares matrix does not share this
property, although it is formed as the product of the rect-
angular Toeplitz-block-Toeplitz data matrix X. It does
have hermitian symmetry, R = R”. One can compute
the four quadrant AR spectra and then form a single
unbiased 2-D AR spectrum from the four individual 2-D
AR spectra as follows

1
Pcombined(fl, f2) -
1 + 1 n 1 n 1
Pi(fi,f2) P23(f1,f2) P3(fi,f2) P4f1.f2)

4. SOLUTION OF 2-D EQUATIONS

A fast computational algorithm for solution of a! to a*
is not based on direct solution for the four quadrants of
2-D linear prediction/AR parameters, but is based on
solving a special variant of the multichannel covariance
algorithm involving the solution of the following set of
multichannel least squares normal equations of order p
and “time” index N3

a,R, = [P: 0 0]
bR, = (0 o P)
where Nt
R,= 3 xKx"[
k=p

and the block vectors of block dimension 1 x (p+ 1) are
defined as

a, = (T a0

Aslpl)

1694

_bp = [Bp[p] Bp[l] I) % prediction/AR 2-D parameters
% p_Q2 -- least sqs. estimate of Q2 quarter-

X|[n] % plane linear prediction variance
X[n~1] % a_Q2 -- matrix of Q2 quarter-plane linear
x,[n] = % prediction/AR 2-D parameters
=r : % p_Q3 -- least sqs. estimate of Q3 quarter-
X[n — p] % plane linear prediction variance
% a_Q3 -- matrix of Q3 quarter-plane linear
Note that at p = ps, —R—p1 is identical to R in eq. (5)’ % prediction/AR 2-D parameters

: : : % p_Q4 -- least sqs. estimate of Q4 quarter-
k3 j— -
so one derives a* for i = 1,2, 3,4 from a, orb, . For " plane linear prediction variance

example % a_Q4 -- matrix of Q4 quarter-plane linear
)) % prediction/AR 2-D parameters
alf)= (10 ... 0)[pg]” -
Ykdedokkkkkkkkkkkkkx Initialization
and scaled such that a'[0,0] = 1, as follows [N1,N2] = size(x);
p=pl+1;
al[k] = al[O]Apl[k] for 1<k<p Np = N1 - p1;

if p*(p2+1) > Np*(N2-p2)

. . 3 3 2
and similarly error(’0Orders pl & p2 give solution singular.’)

end
. . X=0;
aflt)= (0 ... 0 1) [Pg] for ke1:N2
X = [X toeplitz(x(p:-1:1,k),x(p:N1,k))]1;
also scaled such that a*[0,0] = 1 en: hermitian(X¥X’);

1 = toeplitz(x(p:-1:1,1),x(p:N1,1));
N = toeplitz(x(p:-1:1,N2) ,x(p:N1,N2));
hermitian(P - X1*X1°);
hermitian(P - XN*XN’);

a*[k] = a*[0]A,, [k] for 1 < k < py.

P

X

X

p-a
Details of the fast algorithms for the multichannel covari- p.b

a =

b

C

d

ance method of linear prediction and the two-dimensional - B '
covariance 'm'ethod' of linear prediction may be found ip - XN’ /P % use Toeplitz inversion ?
the text Digital Time, Frequency, and Spatial Analysis = X1°/P; % use Toeplitz inversion ?
by Marple (Prentice Hall, 1995). -ea = X;

eb = X;

ec = c*X;
5. MATLAB LISTING ed = d*X;

I = eye(p,p);
function [p_Q1,a_Q1,p_Q2,a_Q2,p_Q3,2_Q3,p_04,a_Q4]... II = eye(Np,Np);

= covar_2D(p1,p2,x) Z = zeros(p,p);
ZZ = zeros{(Np,p);
% Two-dimensional quarter-plane support version of

% the covariance least squares linear prediction clear P X X1 XN
% algorithm using QR-decomposition fast solution. .
% pl is the fixed order & p2 is the variable order. Ykdkdkkknkkkkkkkk Main Recursion #kkksksokskkkkkskksk

%
%
%

It is assumed that p2 >= pl for most efficient
computations, else switch roles of pl and p2. All for k=1:p2
four quadrants (Q1,Q2,Q3,Q4) are computed simul-

% taneously by this fast computational algorithm. disp([’Now at recursive iteration ’,int2str(k)])

% fix(clock)

% [p_Q1,2_Q1,p_Q2,a_Q2,p.03,2_Q3,p_Q4,2_GQ4] ... n = Np*(N2-k);

% = covar_2D(p1,p2,x)

% % error condition checks

% pl -- row order of 2-D linear prediction/ if any(diag(p_a) <= 0) | any(diag(p_b) <= 0)

% AR filter error(’Covariance matrix diag element <= 0°’)
% p2 -~ column order of 2-D linear prediction/ end

% AR filter gam = diag(hermitian(ec(:,n+1:n+Np)));

% x -- matrix of N1 x N2 2-D data samples: del = diag(hermitian(ed(:,1:Np)));

% x(row sample #,column sample #) if any(gam < 0) | any(gam >= 1) |

% p_Q1l -- least sqs. estimate of Q1 quarter— any(del < 0) | any(del >= 1)
% plane linear prediction variance error(’Diag element gain factor nmot 0 to 1’)
% a_Ql -- matrix of Q1 quarter-plane linear end o

1695

% compute partial correlation and reflection
% coefficient matrices

ea = ea(:,Np+i:size(ea,2));
eb = eb(:,1:size(eb,2)-Np);
delta = ea*eb’;

k_a = ~delta/p_b;

k_b = -delta’/p_a;

% order updates for error covariance
% matrices p_a and p_b

P-a = hermitian((I - k_a*k_b)*p_a);

p_b = hermitian((I - k_b¥k_a)*p_b);

% order updates for linear prediction parameter
% arrays a and b

temp = a;

a = [temp Z] + k_a*[b I];

b = [Z b] + k_b*[I temp];

if maximum order has been reached
p2, break, end

% check
if k ==

updates for prediction error
ea and eb

% order
% arrays
temp = ea;

ea = temp + k_a*eb;
eb = eb + k_b*temp;

% square matrix coefficients for next updates
cl =ec(:,1:Np);

c2 = cl/hermitian(II - ed(:,1:Np));

c3 = c1’/hermitian(II - ec(:,n+1:n+Np));

% time updates for gain vectors c’ and d"
temp = c¢;

c = temp + c2%d;

d = d + c3*temp;

% time updates of gain "errors" ec’ and ed"

temp = ec;

ec = temp + c2%ed;
ed = ed + c3+temp;
ec = ec(:,Np+i:size(ec,2));
ed = ed(:,1:size(ed,2)-Np);

% error condition checks
if any(diag(p_a) <= 0) | any(diag(p_b) <= 0)
error(’DIag element of a covar matrix <= 0’)
end
gam = diag(hermitian(ec(:,n-Np+1:n)));
del = diag(hermitian(ed(:,1:Np)));
if any(gam < 0) | any(gam >= 1) |
any(del < 0) | any(del >= 1)
error(’Diag element gain factor not 0 to 1?)
end

% rectangular matrix coefficients for next
% set of updates

cl = ea(:,1:Np);

c2 = eb(:,n-Np+1i:n);

c3 = c2’/p_b;

c4 = c1’/p_a;

c5 = cl/hermitian(IT ~ ed(:,1:Np));

1696

c6 = c2/hermitian(II - ec(:,n-Np+1:n));
% order updates for c and d; time

% updates for a’ and b"

temp = a;

a = temp + cb5%d;

d [ZZ 4] + c4*[I temp];

temp = b;

b = temp + cb*c;

c = [c ZZ] + c3*[temp I];

% time updates for p_a’ and p_b"
p_a = hermitian(p_a - cb*c1’);
p_b = hermitian(p_b - c6%c2’);

% order updates for ec and ed; time
% updates for ea’ and eb"

temp = ed;

ed = temp + cédxea;

ea = ea + cb*temp;

temp = ec;

ec = temp + c3%eb;

eb = eb + c6*temp;
end

disp(’Starting 2-D AR generation’)
clear ea eb ec ed temp

%rkkkkxk compute Q1 2-D AR parameter matrix *kkksx

[1 zeros(1,p1)]1/p_a;
1/real(p_inv(1));

p_inv =
p-Q1

a_Q1 = p_Q1*p_inv;
a_Q1 = [a_Q1 a_Q1xal;
a_Q1 = reshape(a_Q1,p,p2+1);

%kxxxxkx compute Q2 2-D AR parameter matrix skkxkks

p-inv = [1 zeros(1,p1)]1/p_b;
p_Q2 = 1/real(p_inv(1));

a_Q2 = p_Q2*p_inv;
a_Q2 = [a_Q2*b a_Q2];
a_Q2 = fliplr(reshape(a_Q2,p,p2+1));

%rsxkrkx compute Q3 2-D AR parameter matrix *skkskkx

p-inv = [zeros(1,p1) 11/p_b;

P-Q3 = 1/real(p_inv(p));

a_Q3 = p_Q3*p_inv;

a_Q3 = [a_Q3*b a_Q3];

a_Q3 = flipud(fliplr(reshape(a_Q3,p,p2+1)));

%xxkxxkx compute Q4 2-D AR parameter matrix *xkkkk

[zeros(1,p1) 1]/p_a;
1/real(p_inv(p));

p_inv =
p-Q4

a_Q4 = p_Q4+*p_inv,
a_Q4 = [a_Q4 a_Q4=*a];
a_Q4 = flipud(reshape(a_Q4,p,p2+1));

% Copyright 1995

