A FAST ALGORITHM FOR THE TWO-DIMENSIONAL COVARIANCE METHOD OF LINEAR PREDICTION

S. Lawrence Marple Jr. Acuson Corp. Mountain View, CA 94043

ABSTRACT

This paper presents a new fast computational algorithm for the solution of the least squares normal equations of the two-dimensional (2-D) covariance method of linear prediction. The fast algorithm exploits the near-to-doubly-Toeplitz structure of the normal equations when expressed in matrix form. This algorithm is useful for generating high resolution imagery from coherent imaging system in-phase/quadrature (I/Q) data, such as synthetic aperture radar (SAR).

1. CLASSICAL FFT IMAGE GENERATION

The classical imaging algorithm for 2-D coherent imaging system data $x[n_1, n_2]$, assumed available over the rectangular data grid $0 \le n_1 < N_1$, $0 \le n_2 < N_2$, is simply the squared magnitude of the 2-D DFT of the full data array $\left|X(f_1, f_2)\right|^2$ in which the 2-D DFT is

$$X(f_1, f_2) = \frac{1}{N_1 N_2} \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} w[n_1, n_2] x[n_1, n_2]$$

$$\exp(-j2\pi [f_1 n_1 \Delta T_1 + f_2 n_2 \Delta T_2]) \quad (1)$$

and $w[n_1, n_2]$ is an optional 2-D window function used to suppress sidelobes (at the expense of broadening the mainlobe response, thereby decreasing the spatial resolution) and ΔT_1 and ΔT_2 are the sampling intervals in the two dimensions.

However, the classical approach is limited in resolution. To achieve higher resolution in the 2-D image formed from the coherent 2-D phase data (SNR permitting), one approach is to use 2-D autoregressive (AR) spectral analysis, which may select least squares linear prediction techniques to estimate the AR parameters. The tradeoff one makes, of course, is a significant increase in the computations (relative to the FFT) in exchange for the potential resolution enhancement. Thus, fast algorithms are needed to reduce this additional computational burden.

2. 2-D AR PSD AND LINEAR PREDICTION

To develop the 2-D version of the 2-D AR spectrum (which forms the image) based on estimation of the 2-D AR parameters via the 2-D covariance method of linear prediction, consider the case of a 2-D first-quadrant

 (Q_1) quarter-plane linear prediction error filter which, for input 2-D signal $x[n_1, n_2]$ and $[p_1, p_2]$ -th order linear prediction error filter with parameters $a^1[k_1, k_2]$ defined over $0 \le k_1 \le p_1$ and $0 \le k_2 \le p_2$, has the scalar linear prediction error

$$e^{1}[n_{1}, n_{2}] = \sum_{k_{1}=0}^{p_{1}} \sum_{k_{2}=0}^{p_{2}} a^{1}[k_{1}, k_{2}]x[n_{1} - k_{1}, n_{2} - k_{2}]$$
 (2)

in which $a^1[0,0] = 1$ by definition. In anticipation of the fast computational algorithm to be presented, we shall assume that p_1 , the row dimension, is the fixed order parameter and p_2 , the column dimension, is the variable order parameter. An alternative block vector representation of the Q_1 quarter-plane linear prediction error filter output is

$$e^{1}[n_{1}, n_{2}] = \underline{\mathbf{a}}^{1}\underline{\mathbf{x}}[n_{1}, n_{2}] \tag{3}$$

where

$$\underline{\mathbf{a}}^1 = \left(\mathbf{a}^1[0] \quad \mathbf{a}^1[1] \quad \dots \quad \mathbf{a}^1[p_2] \right)$$

is a block vector of block dimension $1 \times (p_2 + 1)$ with vector elements

$$\mathbf{a}^{1}[p] = \left(a^{1}[0,p] \ a^{1}[1,p] \ \dots \ a^{1}[p_{1},p] \right)$$

of dimension $1 \times (p_1 + 1)$ for 0 , and

$$\mathbf{\underline{x}}^{T}[n_{1}, n_{2}] = \begin{bmatrix} x[n_{1}, n_{2}] \dots x[n_{1} - p_{1}, n_{2}] \dots \\ x[n_{1}, n_{2} - p_{2}] \dots x[n_{1} - p_{1}, n_{2} - p_{2}] \end{bmatrix}$$

is a data vector of dimension $(p_1+1)(p_2+1) \times 1$. Recalling that the spectral density relationship in 2-D between input and output signal processes is

$$P_{\text{out}}(f_1, f_2) = |H(f_1, f_2)|^2 P_{\text{in}}(f_1, f_2),$$
 (4)

in which $H(f_1,f_2)$ is the Fourier transform of the system function relating input and output, and assuming that $e^1[n_1,n_2]$ is a white noise process with variance $\rho^1 = \mathcal{E}\{|e^1[n_1,n_2]|^2\}$ so that $x[n_1,n_2]$ is a Q_1 quarter-plane two-dimensional autoregressive (2-D AR) process, then the Q_1 quarter-plane 2-D AR spectrum is given as

$$P^{1}(f_{1}, f_{2}) = \frac{\Delta T_{1} \Delta T_{2} \rho^{1}}{\left| \sum_{k_{1}}^{p_{1}} \sum_{k_{2}}^{p_{2}} a^{1}[k_{1}, k_{2}] \exp(-j2\pi[f_{1} k_{1} \Delta T_{1} + f_{2} k_{2} \Delta T_{2}]) \right|^{2}}$$

In a similar manner, one can define the Q_2 , Q_3 , and Q_4 quarter-plane linear prediction error filter outputs and their corresponding quarter-plane spectra $P^2(f_1, f_2)$ and $P^3(f_1, f_2)$ and $P^4(f_1, f_2)$.

3. 2-D NORMAL EQUATIONS

The 2-D least squares normal equations of the 2-D covariance method of linear prediction are obtained by assuming that 2-D data is available only over the intervals $0 \le n_1 \le N_1 - 1$ and $0 \le n_2 \le N_2 - 1$, so that valid linear prediction errors $e^i[n_1, n_2]$ for quadrants i = 1, 2, 3, 4 can only be formed over the intervals $p_1 \le n_1 \le N_1 - 1$ and $p_2 \le n_2 \le N_2 - 1$ without running off the ends of the data. The total squared error then becomes

$$\rho^{i} = \sum_{n_{1}=p_{1}}^{N_{1}-1} \sum_{n_{2}=p_{2}}^{N_{2}-1} \left| e^{i}[n_{1}, n_{2}] \right|^{2}$$

$$= \underline{\mathbf{a}}^{i} \left(\sum_{n_{1}=p_{1}}^{N_{1}-1} \sum_{n_{2}=p_{2}}^{N_{2}-1} \underline{\mathbf{x}}[n_{1}, n_{2}] \underline{\mathbf{x}}^{H}[n_{1}, n_{2}] \right) \underline{\mathbf{a}}^{iH}$$

$$= \mathbf{a}^{i} \mathbf{R} \mathbf{a}^{iH}$$
(5)

in which the matrix $\underline{\mathbf{R}}$ of dimension $(p_1+1)(p_2+1) \times (p_1+1)(p_2+1)$ has the alternative representations

$$\underline{\mathbf{R}} = \sum_{n_1 = p_1}^{N_1 - 1} \sum_{n_2 = p_2}^{N_2 - 1} \underline{\mathbf{x}}[n_1, n_2] \underline{\mathbf{x}}^H[n_1, n_2]
= \underline{\mathbf{X}} \underline{\mathbf{X}}^H
= \begin{bmatrix}
\mathbf{R}[0, 0] & \mathbf{R}[0, 1] & \dots & \mathbf{R}[0, p_2] \\
\mathbf{R}[1, 0] & \mathbf{R}[1, 1] & \dots & \mathbf{R}[1, p_2] \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{R}[n_2, 0] & \mathbf{R}[n_2, 1] & \mathbf{R}[n_2, n_2]
\end{bmatrix}$$

where

$$\mathbf{R}[i,j] = \sum_{n_2=p_2}^{N_2-1} \mathbf{X}[n_2-i]\mathbf{X}^H[n_2-j]$$

are matrix elements of dimension $(p_1 + 1) \times (p_1 + 1)$,

$$\underline{\mathbf{X}} = \begin{pmatrix} \mathbf{X}[p_2] & \mathbf{X}[p_2+1] & \dots & \mathbf{X}[N_2-1] \\ \mathbf{X}[p_2-1] & \mathbf{X}[p_2] & \dots & \mathbf{X}[N_2-2] \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{X}[0] & \mathbf{X}[1] & \dots & \mathbf{X}[N_2-p_2-1] \end{pmatrix}$$

is a rectangular block-Toeplitz 2-D data matrix of block dimension $(p_2 + 1) \times (N_2 - p_2)$, and $\mathbf{X}[k]$ is defined as

$$\begin{pmatrix} x[p_1,k] & x[p_1+1,k] & \dots & x[N_1-1,k] \\ x[p_1-1,k] & x[p_1,k] & \dots & x[N_1-2,k] \\ \vdots & \vdots & \ddots & \vdots \\ x[0,k] & x[1,k] & \dots & x[N_1-p_1-1,k] \end{pmatrix}$$

which is a rectangular Toeplitz 2-D data matrix of dimension $(p_1+1)\times (N_1-p_1)$. Note that the total squared error of eq. (5) can be an estimate of the variance if normalized as $\rho^i/(N_1-p_1)(N_2-p_2)$.

If the total squared error is minimized, it can be shown that the resulting least squares normal equations take the form

$$\underline{\mathbf{a}}^{1}\underline{\mathbf{R}} = \begin{pmatrix} \rho^{1} & \dots & 0 & 0 & \dots & 0 & \dots & 0 & \dots & 0 \end{pmatrix}$$

$$\underline{\mathbf{a}}^{2}\underline{\mathbf{R}} = \begin{pmatrix} 0 & \dots & 0 & 0 & \dots & 0 & \dots & \rho^{2} & \dots & 0 \end{pmatrix}$$

$$\underline{\mathbf{a}}^{3}\underline{\mathbf{R}} = \begin{pmatrix} 0 & \dots & 0 & 0 & \dots & 0 & \dots & \rho^{3} & \dots & \rho^{3} \end{pmatrix}$$

$$\underline{\mathbf{a}}^{4}\underline{\mathbf{R}} = \begin{pmatrix} 0 & \dots & \rho^{4} & 0 & \dots & 0 & \dots & 0 & \dots & 0 \end{pmatrix}$$

Unlike the Toeplitz-block-Toeplitz matrix of the known 2-D autocorrelation case (that is, the 2-D Yule-Walker equations), the least squares matrix does not share this property, although it is formed as the product of the rectangular Toeplitz-block-Toeplitz data matrix $\underline{\mathbf{X}}$. It does have hermitian symmetry, $\underline{\mathbf{R}} = \underline{\mathbf{R}}^H$. One can compute the four quadrant AR spectra and then form a single unbiased 2-D AR spectrum from the four individual 2-D AR spectra as follows

$$\begin{split} \frac{1}{P^{\text{combined}}(f_1,f_2)} &= \\ \frac{1}{P^1(f_1,f_2)} + \frac{1}{P^2(f_1,f_2)} + \frac{1}{P^3(f_1,f_2)} + \frac{1}{P^4(f_1,f_2)} \end{split}$$

4. SOLUTION OF 2-D EQUATIONS

A fast computational algorithm for solution of $\underline{\mathbf{a}}^1$ to $\underline{\mathbf{a}}^4$ is not based on direct solution for the four quadrants of 2-D linear prediction/AR parameters, but is based on solving a special variant of the multichannel covariance algorithm involving the solution of the following set of multichannel least squares normal equations of order p and "time" index N_2

$$\underline{\mathbf{a}}_{p}\underline{\mathbf{R}}_{p} = \left(\begin{array}{cccc} \mathbf{P}_{p}^{a} & 0 & \dots & 0 \end{array} \right)$$

$$\underline{\mathbf{b}}_{p}\underline{\mathbf{R}}_{p} = \left(\begin{array}{cccc} 0 & \dots & 0 & \mathbf{P}_{p}^{b} \end{array} \right)$$

where

$$\underline{\mathbf{R}}_{p} = \sum_{k=p}^{N_{2}-1} \underline{\mathbf{x}}[k]\underline{\mathbf{x}}^{H}[k]$$

and the block vectors of block dimension $1 \times (p+1)$ are defined as

$$\underline{\mathbf{a}}_p = \left(\mathbf{I} \quad \mathbf{A}_p[1] \quad \dots \quad \mathbf{A}_p[p] \right)$$

$$\mathbf{\underline{b}}_{p} = \left(\mathbf{B}_{p}[p] \quad \dots \quad \mathbf{B}_{p}[1] \quad \mathbf{I} \right)$$

$$\mathbf{\underline{x}}_{p}[n] = \left(\begin{array}{c} \mathbf{X}[n] \\ \mathbf{X}[n-1] \\ \vdots \\ \mathbf{X}[n-p] \end{array} \right)$$

Note that at $p = p_1$, $\underline{\mathbf{R}}_{p_1}$ is identical to $\underline{\mathbf{R}}$ in eq. (5), so one derives $\underline{\mathbf{a}}^i$ for i = 1, 2, 3, 4 from $\underline{\mathbf{a}}_{p_1}$ or $\underline{\mathbf{b}}_{p_1}$. For example

$$\mathbf{a}^{1}[0] = \begin{pmatrix} 1 & 0 & \dots & 0 \end{pmatrix} \begin{bmatrix} \mathbf{P}_{p_1}^{a} \end{bmatrix}^{-1}$$

and scaled such that $a^1[0,0] = 1$, as follows

$$\mathbf{a}^{1}[k] = \mathbf{a}^{1}[0]\mathbf{A}_{p_{1}}[k] \text{ for } 1 \leq k \leq p_{1}$$

and similarly

$$\mathbf{a}^4[0] = \begin{pmatrix} 0 & \dots & 0 & 1 \end{pmatrix} \begin{bmatrix} \mathbf{P}_{p_1}^a \end{bmatrix}^{-1}$$

also scaled such that $a^4[0,0] = 1$

$$\mathbf{a}^{4}[k] = \mathbf{a}^{4}[0]\mathbf{A}_{p_{1}}[k] \text{ for } 1 \leq k \leq p_{1}.$$

Details of the fast algorithms for the multichannel covariance method of linear prediction and the two-dimensional covariance method of linear prediction may be found in the text Digital Time, Frequency, and Spatial Analysis by Marple (Prentice Hall, 1995).

5. MATLAB LISTING

```
function [p_Q1,a_Q1,p_Q2,a_Q2,p_Q3,a_Q3,p_Q4,a_Q4]...
= covar_2D(p1,p2,x)
```

```
% Two-dimensional quarter-plane support version of
% the covariance least squares linear prediction
% algorithm using QR-decomposition fast solution.
% p1 is the fixed order & p2 is the variable order.
% It is assumed that p2 >= p1 for most efficient
% computations, else switch roles of p1 and p2. All
 four quadrants (Q1,Q2,Q3,Q4) are computed simul-
  taneously by this fast computational algorithm.
  [p_Q1,a_Q1,p_Q2,a_Q2,p_Q3,a_Q3,p_Q4,a_Q4] \dots
                                = covar_2D(p1,p2,x)
p1
        -- row order of 2-D linear prediction/
           AR filter
   p2
        -- column order of 2-D linear prediction/
           AR filter
        -- matrix of N1 x N2 2-D data samples:
           x(row sample #,column sample #)
   p_Q1 -- least sqs. estimate of Q1 quarter-
           plane linear prediction variance
```

a_Q1 -- matrix of Q1 quarter-plane linear

```
prediction/AR 2-D parameters
   p_Q2 -- least sqs. estimate of Q2 quarter-
           plane linear prediction variance
   a_Q2 -- matrix of Q2 quarter-plane linear
           prediction/AR 2-D parameters
   p_Q3 -- least sqs. estimate of Q3 quarter-
           plane linear prediction variance
   a_Q3 -- matrix of Q3 quarter-plane linear
           prediction/AR 2-D parameters
   p_Q4 -- least sqs. estimate of Q4 quarter-
           plane linear prediction variance
   a_Q4 -- matrix of Q4 quarter-plane linear
           prediction/AR 2-D parameters
%************** Initialization ***********
[N1,N2] = size(x);
p = p1 + 1;
Np = N1 - p1;
if p*(p2+1) > Np*(N2-p2)
    error('Orders p1 & p2 give solution singular.')
end
X = [];
for k=1:N2
    X = [X \text{ toeplitz}(x(p:-1:1,k),x(p:N1,k))];
P = hermitian(X*X');
X1 = toeplitz(x(p:-1:1,1),x(p:N1,1));
XN = toeplitz(x(p:-1:1,N2),x(p:N1,N2));
p_a = hermitian(P - X1*X1');
p_b = hermitian(P - XN*XN');
a = [];
b = [];
c = XN'/P;
                 % use Toeplitz inversion ?
d = X1'/P:
                 % use Toeplitz inversion ?
ea = X;
eb = X;
ec = c*X;
ed = d*X;
I = eye(p,p);
II = eye(Np,Np);
Z = zeros(p,p);
ZZ = zeros(Np,p);
clear P X X1 XN
%*********** Main Recursion **********
for k=1:p2
disp(['Now at recursive iteration ',int2str(k)])
fix(clock)
   n = N_{p}*(N_{2}-k);
    % error condition checks
    if any(diag(p_a) \le 0) \mid any(diag(p_b) \le 0)
       error('Covariance matrix diag element <= 0')</pre>
    gam = diag(hermitian(ec(:,n+1:n+Np)));
    del = diag(hermitian(ed(:,1:Np)));
    if any(gam < 0) \mid any(gam >= 1) \mid ...
                       any(del < 0) \mid any(del >= 1)
       error('Diag element gain factor not 0 to 1')
    end
```

```
% compute partial correlation and reflection
                                                            c6 = c2/hermitian(II - ec(:,n-Np+1:n));
% coefficient matrices
ea = ea(:,Np+1:size(ea,2));
                                                            % order updates for c and d; time
eb = eb(:,1:size(eb,2)-Np);
                                                            % updates for a' and b"
delta = ea*eb';
                                                            temp = a;
k_a = -delta/p_b:
                                                            a = temp + c5*d;
k_b = -delta'/p_a;
                                                            d = [ZZ d] + c4*[I temp];
                                                            temp = b;
% order updates for error covariance
                                                            b = temp + c6*c;
% matrices p_a and p_b
                                                            c = [c ZZ] + c3*[temp I];
p_a = hermitian((I - k_a*k_b)*p_a);
p_b = hermitian((I - k_b*k_a)*p_b);
                                                            % time updates for p_a' and p_b"
                                                            p_a = hermitian(p_a - c5*c1');
% order updates for linear prediction parameter
                                                            p_b = hermitian(p_b - c6*c2');
% arrays a and b
temp = a;
                                                            % order updates for ec and ed; time
a = [temp Z] + k_a*[b I];
                                                            % updates for ea' and eb"
b = [Z b] + k_b*[I temp];
                                                            temp = ed;
                                                            ed = temp + c4*ea;
% check if maximum order has been reached
                                                            ea = ea + c5*temp;
if k == p2, break, end
                                                            temp = ec;
                                                            ec = temp + c3*eb;
% order updates for prediction error
                                                            eb = eb + c6*temp;
% arrays ea and eb
                                                        end
temp = ea;
ea = temp + k_a*eb;
                                                        disp('Starting 2-D AR generation')
eb = eb + k_b*temp;
                                                        clear ea eb ec ed temp
% square matrix coefficients for next updates
                                                        %****** compute Q1 2-D AR parameter matrix ******
c1 =ec(:,1:Np);
c2 = c1/hermitian(II - ed(:,1:Np));
                                                        p_{inv} = [1 zeros(1,p1)]/p_a;
c3 = c1'/hermitian(II - ec(:,n+1:n+Np));
                                                        p_Q1 = 1/real(p_inv(1));
                                                        a_Q1 = p_Q1*p_inv;
% time updates for gain vectors c' and d"
                                                        a_Q1 = [a_Q1 \ a_Q1*a];
temp = c;
                                                        a_Q1 = reshape(a_Q1,p,p2+1);
c = temp + c2*d;
d = d + c3*temp;
                                                        %***** compute Q2 2-D AR parameter matrix ******
% time updates of gain "errors" ec' and ed"
                                                        p_{inv} = [1 zeros(1,p1)]/p_b;
temp = ec;
                                                        p_Q2 = 1/real(p_inv(1));
ec = temp + c2*ed;
                                                        a_Q2 = p_Q2*p_inv;
ed = ed + c3*temp;
                                                        a_Q2 = [a_Q2*b a_Q2];
ec = ec(:,Np+1:size(ec,2));
                                                        a_Q2 = fliplr(reshape(a_Q2,p,p2+1));
ed = ed(:,1:size(ed,2)-Np);
                                                        %***** compute Q3 2-D AR parameter matrix ******
% error condition checks
if any(diag(p_a) \le 0) \mid any(diag(p_b) \le 0)
                                                        p_{inv} = [zeros(1,p1) 1]/p_b;
   error('DIag element of a covar matrix <= 0')
                                                        p_Q3 = 1/real(p_inv(p));
end
                                                        a_Q3 = p_Q3*p_inv;
gam = diag(hermitian(ec(:,n-Np+1:n)));
                                                        a_Q3 = [a_Q3*b a_Q3];
del = diag(hermitian(ed(:,1:Np)));
                                                        a_Q3 = flipud(fliplr(reshape(a_Q3,p,p2+1)));
if any(gam < 0) \mid any(gam >= 1) \mid ...
                   any(del < 0) \mid any(del >= 1)
                                                        %***** compute Q4 2-D AR parameter matrix ******
   error('Diag element gain factor not 0 to 1')
end
                                                        p_{inv} = [zeros(1,p1) 1]/p_a;
                                                        p_Q4 = 1/real(p_inv(p));
% rectangular matrix coefficients for next
                                                        a_Q4 = p_Q4*p_inv;
% set of updates
                                                        a_Q4 = [a_Q4 \ a_Q4*a];
c1 = ea(:,1:Np);
                                                        a_Q4 = flipud(reshape(a_Q4,p,p2+1));
c2 = eb(:,n-Np+1:n);
c3 = c2'/p_b;
                                                        % Copyright 1995
c4 = c1'/p_a;
```

c5 = c1/hermitian(II - ed(:,1:Np));