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ABSTRACT

We consider the identification of systems which are both
time-varying and nonlinear. This class of systems is more
likely to be encountered in practice, but is often avoided due
to the difficulties that arise in modelling and estimation.
We attempt to address this problem by considering a new
time-varying nonlinear model, the time-varying Hammer-
stein model, which effectively characterises time-variation
and nonlinearity in a simple manner. Using this model we
formulate a procedure to find least-squares estimates of the
coefficients. The model is general and can be used when
little is known about the time-variation of the system. In
addition, we do not require that the input is stationary or
Gaussian. Finally, an application to automobile knock mod-
elling is presented, where a time-varying nonlinear model
is seen to more accurately characterise the system than a
time-varying linear one.

t. INTRODUCTION

Nonlinear system identification is concerned with determin-
ing an appropriate model in order to describe the relation-
ship between the input and output signals of an unknown
system. Once a candidate model has been chosen, the iden-
tification task is one of parameter estimation. System iden-
tification is important for modelling, prediction, detection,
control and equilisation [1]-[4].

We are particularly interested in identifying nonlinear
systems which exhibit time-varying characteristics, since
they arise so frequently in control, physiology, communica-
tions and engineering. There are currently very few general
identification procedures available to solve this problem.
We demonstrate the use of a new time-varying nonlinear
model, the time-varying Hammerstein model, which is able
to characterise both the time-variation and the nonlinearity
of the system in a simple manner.

In Section 2, we present the model and formulate the
identification procedure. We discuss the approach in Sec-
tion 3, and then give an example in Section 4 where we
model the transmission characteristics of a combustion en-
gine under knocking conditions.
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2. FORMULATION OF THE IDENTIFICATION
PROCEDURE

2.1. The Model

The Volterra series is an important non-parametric model
for nonlinear system identification [3], which assumes that
an analytic relationship between a random input X(t) and
output Y(¢),t = 0,1, ... of a time-varying nonlinear system
may be expressed as

Y(t) = Z gi(t, )X (@ —71)+

mﬁ:?ﬂ (1)
Y et )X -T)XE-T)+ -
71=0712=0
where the set of functions {gn(t,71,...,7)}, n = 1,2,...

are the time-varying Volterra kernels, and m denotes the ex-
tent of the system’s memory. The Volterra kernels have the
interpretation of characterising the linear, quadratic and
higher order interactions of the system, and thus are phys-
ically meaningful representations.

As the time-varying kernels consist of many coefficients,
there are often difficulties in visualisation and interpreta-
tion. Additionally, the estimation of the Volterra kernels us-
ing a cross-correlation based approach requires the compu-
tation of time-varying higher order spectra. This presents
severe analytic and estimation problems, particularly when
the input is non-Gaussian [3].

We propose an alternative to the model in (1). We
extend a model that has been widely used for time-invariant
nonlinear system identification, known in the literature as
the Hammerstein model (e.g. see [5]). We define a new
time-varying Hammerstein model as consisting of a static
nonlinear function, followed by a time-varying linear filter,

Bg(z—l)
mlﬂ(-’f(t)) + N(t), (2)

Y(t) =
where X (t) and Y (¢) are the observed input and output sig-
nals respectively and N(¢) is stationary, white, zero-mean
noise, independent to X(t), and z™' is the unit delay op-
erator. ¢ is a zero memory nonlinear function. We model
memory with a rational filter having time-varying coefhi-
cients in order to reduce the number of parameters required
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to characterise the system which is expressible as,
Be(z™') _ b(t,0) +b(t,1)z7" + - +b(t, m)z""
1+A4.(zY)  l+a(t, Dzt +---+a(t,n)z™™
The advantage of this model is that it is simple and capable

of characterising time-varying and nonlinear behaviour. A
block diagram of this model is shown in Figure 1.
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Figure 1: The time-varying Hammerstein model.

We assume that the nonlinear function can be approxi-
mated with a pth order polynomial' with coeficients {c},
i=1,...,p. This step enables us to transform the single-
input single-output nonlinear model into a multi-input single-
output time-varying linear model. This is achieved by treat-
ing each term of the polynomial as a separate input to the
time-varying filter. We can assume that o1 is unity without
loss of generality. This configuration is shown in Figure 2,
where the notation (-)* means X (¢)*.
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Figure 2: The multi-input Hammerstein maodel.

The output of the nonlinear function, Z(t), can be expressed
as

Z(t) =Y X(t).
=1

Thus the total system output is

Bt(Z_l)
1+ A(271)

_ Bt(Z_l)
= Trae 2O+ N,

Re-arrangement of the above equation leads to
(1+A(z"M)) Y (&) = Bo(z 1) Z(t) + (1 + A(z™")) N(2)
which becomes
Y() = %(z'l)Z(t) - Ag(z—:)Y(t) + E(t)
> bt m)Z(t - )= a(t,v)Y (¢ — v)+E(t)
=0 v=l
(3)

INote that if 1 were known, the estimation task is straight-
forward given that X(t) is observable.

Y(t) Y(X (1)) + N(t)

with E(t) = (1+ A¢(2")) N(t). The model in (3) is non-
linear in the parameters, however we can perform a lineari-
sation by setting b:(t,7) = a:b(t,7). We now substitute
this and Z(t) into (3) to yield

n

Y=Y > bit,)X(t—-7) =Y alt,v)Y(t-v)+E().

i=1 r=0 v=1
(4)

The model has thus been linearised at the expense of in-
creased parameterisation. The problem now is to estimate
bi(t,7),i=1,...,p, 7=0,...,mand a(t,v}), v=1,...,n
for a nominated p, m and n.

2.2. Estimation Procedure

Our model assumes that the same basic time-varying non-
linear behaviour operates on each realisation. Given mul-
tiple realisations of the input and output processes X,(t)
and Y, (t)forr=1,...,Randt=0,...,T —1 we can write
(4) for the rth realisation as

p m n
Yo ()= 3 bilt, ) Xn(t - Y=Y _a(t, v)Yi(t — v)+En(t)

i=1r1=0

We can now re-write the above as a set of linear equations

bl(t,T)
b2(t’7')
ve = [Xe X} ... X2 Y, | : +ee
bP(t:T)
—a(tav)
= Dugt + e,
(5)

where y; is an [R x 1] vector, X; is a [R x (m + 1)] matrix
with the (j, k)th element X; (¢t — k), Y: is a [R x m] matrix
with (4, k)th element Y;(t — k), D; is an [R x M| matrix,
g: is an [M x 1] vector and M = (m + 1)p+n and e; is an
[R x 1] vector for t = 0,...,T — 1. The notation X} here
means that each element of X; is taken to the pth power.
We now attempt to find least-squares estimates for g;.

We generally require that B > M, representing the over-
determined case and thus D; is non-square. The singular
value decomposition allows us to find the best low rank
approximation for this problem [6]. The Moore-Penrose
pseudo inverse of Dy, Df, leads to least-squares estimates
for g: at each time instant ¢,t =0,..., T —1:

g =D¥y..

Once an estimate for g: has been found, the polynomial
coefficients can be estimated via &; = b;(¢,7)/bi(t,T) for
i=2,...,poverr=0,...,mandt=0,...,T—1 Asa
result there exists an amount of redundancy in the polyno-
mial coefficient estimates. We choose to take the median
to determine the estimates for {a;}, since it is relatively
robust against outliers.
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3. DISCUSSION

3.1. Volterra Series Representation

Given that the time-varying linear filter can be represented
by the time-varying impulse response g(t,7), we can relate
the time-varying nonlinear model to an equivalent time-
varying Volterra series representation. This is done by
equating like orders of the two models. The relationship
between the nth order Volterra kernel, hn(71,...,7a), in
(1) and the model in (2) is given by

ha(m,...,Ta) = g(t,7)6(r1 —72) -+ 8(11 — Tn)
n—1
= ang(t,Tl)HJ(’Tl"Tq+l)
q=1

Although the model in (2) is not as general as the time-
varying Volterra series, it has the advantage that the model
can be easily visualised and interpreted.

3.2. Reductions for Simpler Structures

‘We now discuss how the configuration of the model simplfies
when additional structural assumptions can be made about
the system.

3.2.1. Transversal and recursive filter

The conditions when n = 0 and m = 0 in (4) respectively
correspond to special forms of transversal or recursive filter
configurations. For the traversal filter, we have a similar
form to (5), but with D¢ a [R x mp] matrix and g: a [(m +
1)p x 1] vector for t =0,...,T — 1. For the recursive filter,
we have D; a [R x n] matrix and g; a [n x 1] vector.

3.2.2. Time-wnvariant nonlinear filter

For a time-invariant nonlinear model (a(t,7) = a(r) and
b(t, 7) = b(7)) we only require one input-output observation
(R =1). We have y = D;g + e with y a [T x 1] vector, D
a [T x ] vector, g a [l x 1] vector and e; a [T’ x 1] vector
fort =0,...,T — 1.

3.2.8. Time-varying linear filter

If the model is linear (p = 0), then the problem reduces to
the estimation of a single-input single-output time-varying
linear filter. Thus we have D; a [R x m] matrix and g; a
[m x 1] vector fort =0,...,T —1.

3.3. Attaining Input-Output Records

The identification procedure requires that the same time-
varying behaviour operates on each realisation. We can-
not generally segment a single input-output observation
into individual records since the output is generally non-
stationary. As a result obtaining records may prove more
difficult in practice. However, input-output records for the
identification procedure can be collected for certain classes
of signals, such as cyclostationary signals [7]. Thus the

method is particularly well suited to applications such as
rotating machinery or periodic phenomena.

4. APPLICATION: KNOCK TRANSMISSION
MODELLING

The system identification method was first verified using
simulated input-output data, where we obtained good re-
sults. We now present an example to indicate the use and
potential of the approach to a practical system identifica-
tion problem arising from the automotive industry.

4.1. Background

It is known from spark ignition engine theory that increas-
ing the compression ratio results in increased engine effi-
ciency [8], but this also increases the occurrence of an abnor-
mal combustion phenomenon called knock. Knock needs to
be avoided as it results in an excessively noisy, over-heated
and inefficient engine, and leads to premature mechanical
failure. System identification techniques can be used for de-
termining the optimal positioning of sensors for detecting
the knocking condition [1].

A number of physical factors motivate the use of a time-
varying nonlinear model: the motion of the piston, the rapid
pressure variation during combustion, non-uniform acous-
tic losses during the knocking condition and nonlinear res-
onances varying over vapour temperature [4].

4.2. The Identification Process

We compared the time-varying Hammerstein model to a
time-varying linear model with real knock data®. Cylin-
der pressure and engine vibration signals constituted the
system input and output records respectively, measured
under strong knocking conditions for 150 cycles over ¢ =
0,1,...,375. Typical input and output signals are shown
in Figures 3 and 4. Note that the multiple realisations re-
quired for the identification procedure were easily obtained
since the knock signals were assumed to be cyclostationary.

A second order polynomial was used as the nonlinear
function, with system memory m = 15,n = 0. Figure 5
shows the estimated time-varying impulse response. The
estimated polynomial coefficients were {1,.21}. Figure 6
compares the mean-square error between the observed and
predicted outputs of the two models over the set of real-
isations; the dashed line corresponds to the time-varying
model and the solid line to the time-varying nonlinear case.
The poorer performance of the time-varying linear model
suggests that a better choice of model is a time-varying
nonlinear one. The results obtained here demonstrate the
potential of this method for identifying time-varying non-
linear systems.

2Acknowledgements: We would like to thank Prof. J.
F. Béhme from the Signal Theory Division of Ruhr University
Bochum and Volkswagen AG, Wolfsburg, Germany, for kindly
providing the knock data used in this paper.
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5. CONCLUSIONS

We have proposed a new approach for time-varying non-
linear system identification. This procedure can be used
when little is known about the time-varying dynamics of
. the system. The approach is simple in concept and in im-
plementation. The method does not require that the input
is stationary or Gaussian, which is an assumption that is
often necessary for other system identification strategies.
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Figure 3: Cylinder pressure (Input).
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Figure 4: Engine vibration (Qutput).

Figure 5: Estimated time-varying linear impulse response.

(1]

(3]
4

(5]

(6l
(7]

[8]

1688

Mean square prediction error
- n n
T

g

3] 50 100 150
Reajisation

Figure 6: Comparison of mean-square prediction
error for the two models — solid line: time-varying
nonlinear model, dashed line: time-varying linear.
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