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Abstract: In this paper, we investigate linear de-
pendence of steering vectors of one electromagnetic
vector sensor. We show that every 3 steering vectors
with distinct DOA’s are linearly independent. We also
show that 4 steering vectors with distinct DOA’s are
linearly independent if the ellipticity angles of the sig-
nals associated with any 2 of the 4 steering vectors
are distinct. We then establish that 5 steering vectors
are linearly independent if exactly 2 or 3 of them cor-
respond to circularly polarized signals with the same
spin direction. Finally, we demonstrate that given any
5 steering vectors, then.for any DOA there exists a
steering vector which is linearly dependent on the 5
steering vectors.

1. Introduction

Estimating the directions-of-arrival (DOA’s) of
narrow-band electromagnetic (EM) signals is a sub-
ject of both theoretical interest and practical impor-
tance. Many existing methods for estimating DOA’s
exploit the phase delays of signals received at an ar-
ray of scalar sensors with respect to the signal at a
reference sensor [1]. Around 1980, researchers began
to propose methods that utilize measurements con-
taining both the phase delays and polarization infor-
mation. It has been demonstrated that with an in-
corporation of polarization information, the ability to
resolve closely-spaced signals improves greatly.

Very recently, Nehorai and Paldi {2] proposed es-
timating DOA’s with vector sensors, where each pro-
vides measurements of the complete electric and mag-
netic fields induced at the sensor. The measurements
of the complete electric and magnetic fields that a vec-
tor sensor yields, offer much more than polarization
information. Indeed, the cross product of the electric
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field and the magnetic field which an EM signal in-
duces at a vector sensor gives directly the DOA of the
EM signal. In comparison, one requires more than
three appropriately deployed scalar sensors to deter-
mine uniquely both the azimuth and elevation of an
EM signal.

Significant results on DOA estimation with
vector-sensor arrays are available in the papers by Ne-
horai and Paldi {2], [3] and that by Li [4]. In [2], [3],
the authors derived a data model which include the
complete electromagnetic measurements. Through an
explicit evaluation of the Cramér-Rao bound (CRB)
on the estimation errors, they demonstrated the ad-
vantage of using vector sensors, and provided insight
into the quality of DOA and polarization estimates.
A cross product based DOA estimation algorithm for
one signal was also proposed in [2], [3]. On estimating
the DOA’s of multiple signals with multiple vector
sensors, Li [4] capitalized on the invariance proper-
ties among the sensor outputs to devise a powerful
ESPRIT-based algorithm. '

The studies in [2]-[4] were carried out based on
the assumption that the steering vectors correspond-
ing to the signals of concern are linearly independent.
However, the validity of this assumption has yet to be
established. As a matter of fact, linear independence
of steering vectors relates very closely to uniqueness
in DOA estimates. For the case of scalar-sensor ar-
rays, Wax and Ziskind [5] and Nehorai et al. [6] have
established a relationship among linear dependence of
steering vectors, correlation among signals, and the
number of signals whose DOA’s can be uniquely de-
termined.

In this paper, we shall present some results on
linear dependence of steering vectors. These results
confirm the validity of the assumption made in [2]-{4],
and are useful for establishing the number of signals
whose DOA’s can be uniquely determined.
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2. Data Model and Preliminary Discussion

Since we are most concerned with DOA estima-
tion with electromagnetic vector sensors, we shall re-
fer to electromagnetic veclor sensor as sensor, unless
otherwise specified. We shall adopt the phasor data
model developed in [2], [3]:

n

y(t)=Z(dk®16)(( ))vkxk(t)+e(t), (1)

k=1

where y(t) and n(t) are 6m x 1 complex vectors re-
spectively given by :
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xk(t) € C?*1, 1; is the (I x 1) identity matrix, and ®
the Kronecker product Note that y(¥)(t), e(®)(t) €
C*6 fork=1,...,m.

There is a physical meaning associated with each
of the above variables. Indeed, a vector sensor will
yield measurements of 3 perpendicular components of
the electric and magnetic fields (in the same direc-
tions) that are induced at the sensor. We set up
a Cartesian coordinate system, with the origin co-
located with the reference sensor, and each of the axes
in the direction of a component of the electric field
measurable by the sensor. Then y()(t) and e((t)
are respectively the 6-component measurements of the
electric and magnetic fields, and the noise at the Ith
sensor at time ¢. The symbol n denotes the number of
EM signals impinging on the array, w,. the frequency
of the signals, ¢ and ¥ are respectively the azimuth
and elevation of the kth signal, and u; is a unit vec-
tor pointing towards the DOA of the kth signal. (The
values of ¢ and ¥} are in (—,7] and [—-7/2,7/2)
respectively.) The symbol m denotes the number of
sensors, and 7 is the differential delay of the kth
signal at the Ith sensor with respect to the reference
sensor.

Two methods for transmitting signals, namely
single signal transmission and dual signal transmis-
sion, are discussed in [2]. Here, we shall call signals
transmitted using the former polarized signals, and the
latter general signals (since with dual signal transmis-
sion, the signals can be unpolarized, partially polar-
ized, or even polarized). For polarized signals, equa-
tion (1) can be written as

y(t) = As(t) + (1),

where
A =[a(8,),...,a(6n)),
ek = (¢k;¢k)akyﬂk)) (3)
a(Bk) = dk ® B(¢k; ¢k)Q(ak)w(:Bk)a (4)
—sin ¢ — ¢OS P sin Y
COS Pp — sin ¢ sin ¢
B(gr, i) = ° cos v
k¥R =1 _cos ok sin Y sin ¢ ’
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)

W= (5 wn) o
w(Bx) = [cos B, jsin Bi]7, )

s(t) = [31 (t), ceey Sn(t)]T,

and s;(t) is the complex envelope of the Ith signal at

time t. Note that ap € (—7/2,7/2] is referred to
as orientation angle and Bx € [—n/4, m/4] ellipticity
angle.

For general signals, equation (1) can be written

¥(t) = Agsg(t) + e(t),

where

A!I = [d1®B(¢1’¢1))"'1

se(t) = 5000, 50, ..., §M (), sV )T,

and §gk)(t) and 5(;) (t) represent the complex envelopes
of the kth transmitted signal.

It is easy to see that for a polarized signal with
azimuth ¢, elevation g, orientation angle a; and
ellipticity angle B, the array measurements (in the
absence of noise) lie in the subspace spanned by the
vector a(6;) as defined in (4). For a scalar-sensor
array, it is a well known fact that in the presence of
only a signal, the array measurements will be confined
to the subspace spanned by the steering veclor corre-
sponding to the DOA of the signal. Thus it makes

dﬂ ® B(¢ﬂ$ d)n)])
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good sense to refer to a(6:) as a steering vector. In
comparison, the array measurements of a general sig-
nal will lie in a 2 dimensional subspace spanned by
di ® B(@k, ¥x), where (¢, i) is the DOA of the sig-
nal. Linear dependence of a(8:)’s will be the main
concern of this paper.

3. Linear Dependence of Steering Vectors

Observe that the steering vectors of a vector-
sensor array (for polarized signals) are much more
complex than those of a scalar-sensor array. Basi-
cally, for a polarized signal with azimuth ¢, ele-
vation ¥, orientation angle ap and ellipticity an-
gle B, the steering vector of a vector-sensor ar-
ray corresponding to the signal has an additional
term B(¢k, ¥r)Q(ar)w(Be), compared with that of
a scalar-sensor array having the same sensor configu-
ration. The term B(¢, ¥&)Q(ar)w(B) is a compli-
cated vector given by

~(cacp+ISasp)ss + (sacs — jcasp)cssy

(cacs+Jsasp)ce+(sacs —jcasp)sssy
(—sa s +Jjcasp)cy

—(sacp — jcasp)ss — (Ca s+ JSa3s)CsSy

(sacs —jcasp)cy — (Cacp +jsasp)sssy
(cacp +sasp)cy

where the symbols s, and ¢4, denote respectively sin o
and cosa.

Basically, to examine whether a set of k steering
vectors of a vector-sensor array are linearly indepen-
dent, one has to analyze the rank of

(d1 ® B:Qiwy,...,dk ®Bkawk),

where d;, Br = B(é1,%1), Qi = Q(ai), and w; =
w(B;) are as defined in (2), (5), (6) and (7) respec-
tively. For the same purpose with scalar-sensor ar-
rays, one just has to examine the rank of [dy,...,ds],
which is apparently simpler.. Fortunately, as will be
seen in Theorem 1, it suffices to analyze the rank of

(d1®B($1,91),---, e © B(d, %)),

which contains fewer terms due to the absence of
Q(a)w(B)’s. As a result, the complexity of the anal-
ysis can be reduced significantly.

Theorem 1: Every k steering vectors of a vector-
sensor array with distinct DOA’s, are linearly inde-
pendent if and only if for every set of k steering vectors
with distinct DOA’s (1, ¥1), ..., (&, ¥&),

rank (dl ® B(41,%1),...,d: ® B(¢s, '/’k)) = 2k.

(The proof of this and other theorems appear in
(7].)

From Theorem 1, we obtain the following corol-
lary.

Corollary to Theorem 1: For an m-sensor array,
there exist (3m + 1) steering vectors with distinct
DOA’s that are linearly dependent.

Although this corollary is an immediate conse-
quence of Theorem 1, it offers more explicitly, the
maximum number of steering vectors that can be lin-
early independent for a general array. Indeed, since
each steering vector has 6m elements, it is possible
that every 6m different steering vectors are linearly in-
dependent. This corollary, however, states that there
exist (3m+1) (which is less than 6m) steering vectors,
corresponding to distinct DOA’s, which are linearly
dependent.

Applying Theorem 1, we obtain the following
theorem on linear independence of 3 steering vectors.

Theorem 2: For any vector-sensor array, every 3
steering vectors with distinct DOA’s are linearly in-
dependent.

Theorem 2, together with the fact that there ex-
ist 4 steering vectors of one vector sensor that are
linearly dependent (see the Corollary to Theorem 1),
are useful for establishing the maximum number of
signals whose DOA’s can be uniquely determined.

The next theorem states that the condition for 4
steering vectors to be linearly dependent is very strin-
gent.

Theorem 3: Four steering vectors of a vector-sensor
array corresponding to distinct DOA’s, are linearly
dependent only if the ellipticity angles of the signals
corresponding to the steering vectors are identical.

We also establish a condition for 5 steering vec-
tors to be linearly independent.

Theorem 4: Five steering vectors of a vector-sensor
array with distinct DOA’s are lineatly independent if
exactly k of them correspond to circularly polarized
signals with the same spin, where k € {2,3}.

The conditions for 4 or 5 steering vectors to be
linearly independent can be useful when considering
specific applications. For example, on estimating the
DOA'’s of skywaves [8], one can assume that practi-
cally every 4 steering vectors are linearly independent.
Indeed, when polarized signals from a transmitter are
reflected from the various layers of the ionosphere, the
polarizations of the reflected signals tend to vary with,
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among other factors, the electron densities of the iono-
sphere around the layers. Since the electron densities
of different layers of the ionosphere are likely to be
different, one can expect the polarizations of reflected
signals from the various layers to be distinct. Thus, it
follows from Theorem 3 that every 4 steering vectors
corresponding to the signals are linearly independent.

Next, we establish a theorem that provides a
good insight into estimating the DOA’s of 5 uncor-
related signals.

Theorem 5: Given any 5 steering vectors of one vec-
tor sensor, then for any DOA there exists a steering
vector which is linearly dependent on the 5 steering
vectors.

It is immediate from Theorem 5 that in the pres-
ence of 5 uncorrelated signals, one can find a steering
vector corresponding to an arbitrary direction, that
intersects the signal subspace. This means that es-
timation of DOA’s of 5 signals with one EM vector
sensor is impossible.

Finally, when a set of steering vectors are circu-
larly polarized, there is an interesting characterization
of their linear dependence. -

Theorem 6: Every 4 steering vectors of one vec-
tor sensor corresponding to circularly polarized signals
having the same spin direction are linearly dependent.

4. Conclusion

We showed that the task of establishing the ex-
istence of linearly dependent steering vectors may be
simplified greatly via a decoupling of the DOA pa-
rameters from the polarization parameters. We then
established that every 3 steering vectors with distinct
DOA’s are linearly independent. We also showed that
4 steering vectors with distinct DOA’s are linearly in-
dependent if the ellipticity angles of the signals as-
sociated with any 2 of the 4 steering vectors are dis-
tinct. We next established that 5 steering vectors are
linearly independent if exactly 2 or 3 of them corre-
spond to circularly polarized signals with the same
spin direction. Finally, we demonstrated that given
any 5 steering vectors, then for any DOA there exists
a steering vector which is linearly dependent on the 5
steering vectors.

So far, we have focused our study on a single vec-
tor sensor. There are many interesting and important
issues regarding linear dependence of steering vectors
of a multiple-sensor array. First, given a multiple-
sensor array, it is of practical importance to identify
the maximum number v associated with the array,

where every v steering vectors with distinct DOA’s
are linearly independent. Second, it is crucial to es-
tablish the conditions under which a set of steering
vectors are linearly independent. Third, it is a chal-
lenging task to identify sensor configurations giving
rise to steering vectors with high order of linear inde-
pendence. In a companion paper [9], we address some
of these issues.
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