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ABSTRACT

This paper attempts to assess the potential per-
formance gain of spatial-temporal processing relative
to conventional spatial processing, for signals obeying
a deterministic parametric model. The Cramer-Rao
bound (CRB) on the estimates of the source direc-
tions of arrival (DOA) is used to quantify this gain.
Spatial-temporal processing does not yield any such
gain in the single source case, or for multiple coherent
signals. However, significant gains can be achieved for
multiple non-coherent signals.

1. INTRODUCTION

Conventional array processing methods are based
on the spatial properties of the signals impinging on
the array and ignore their temporal structure. In many
applications including communications, sonar, radar
and Doppler ultrasound, the signals have a known
temporal structure which can be used to enhance the
performance of array processing methods. Based on
this observation, several authors have recently advo-
cated the use of signal-selective array processing meth-
ods which exploit both temporal and spatial proper-
ties of the signals. For example, [1] presents a tech-
nique based on high-order statistics utilizing the non-
Gaussian nature of the signals. Techniques exploiting
the cyclostationarity of digital communications signals
are presented in [2].

In this paper we take a different approach and
consider signals whose temporal variation can be de-
scribed by a known function of time with unknown
deterministic parameters. In other words we assume
that each of the source signals obeys a deterministic
parametric model. This class of signals is very general
and includes as a special case the class of polynomial
phase signals [3] which is quite general by itself. Sim-
ple examples of polynomial phase signals are the lin-
ear and quadratic frequency modulated (FM) signals
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commonly used in radar and sonar. Another example
includes signals which have a continuous and smooth
phase and a slowly varying amplitude. Sufficiently
short segments of such signals can be well approxi-
mated by low order polynomials. This type of signals
is often used in analog communication systems.

The purpose of this paper is to assess the potential
gain in spatial-temporal processing relative to conven-
tional spatial processing, for the above class of deter-
ministic signals. It appears likely that prior informa-
tion about the temporal structure of the signals will
yield some gain in performance. By deriving the CRB
on the estimates of the source directions of arrival we
quantify this gain and identify the cases for which the
gain is significant.

2. PROBLEM FORMULATION

We consider an arbitrary array composed of M
sensors. Let N plane waves impinge on the array from
directions {6,,...,0x}. Each of the source signals is
completely characterized by P parameters and is given
by s(t,bn) where b, is the vector of the n-th signal
parameters and s() is a known complex function.

The noise free signal at the output of the m-th
element is given by

N

Ym(t) = Z s[t + 7 (6n), bal (1)

n=1

where 7,,(0) is the differential propagation delay from
a source at direction # to the m-th element.

s4(t) = s(t,b,) can be written as u,(t) exp/%~(*
where u,(t) and ¢,(¢) are the amplitude and phase
functions. Usually ¢,(t) and u,(t) are continuous and
smooth function of time and u,(t) varies slowly com-
pared to ¢,(2).

Assuming that the variation of the instantaneous
frequency, wy(t) = 9—*“’—;‘@, is a small fraction of the
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carrier frequency wo, and that u,(t) varies slowly com-
pared to ¢, (t), we can make the following approxima-
tion.

s[(¢ + Tin(0r), br] = 5(t,bn) exp(jotm(6a)  (2)

Without loss of generality we assume that the ar-
ray outputs are down converted to baseband prior to
sampling. The vector of received signals can be writ-
ten as

x(te) = A@)a(te,b) +n(t:) 1<k<K. (3)

where n(t) is the vector of measurement noise,
q(t,b) = [g(t,b1), .., q(t,ba)]"
q(t,bn) = s(t, bs) exp{—jwot} (4)

and

A(8) = [a(61),--,a(bn)] (5)

a(f) is the array manifold in the direction 8 at fre-
quency wo,

a(8) = [exp(jwori(9)), ..., exp(jwo‘rM(G))]T (6)

We assume that the noise vector n(t) is Gaussian
distributed and satisfies E[n(t)] = 0, E[n(t)nT(s)] = 0,
and

sowtel={) 135 O

3. THE CRB

Denote the vector of unknown parameters by ¢,

¥ =[nbis, by, bip, o, bvp, 871 (8)

where by, is the p-th temporal parameter of the n-th
source.

It is well known that the CRB for 9 is given by
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CRB(¢) = [F($)]™ (%)

where F(¢) is the Fisher information matrix (FIM)
for ¥. We have shown that

F(¢) = %Re (10)
—"gTK 0 . 0 0

0 A"AxRy AHFAx Rty AHD x RT

AHAx Rpp AYDx RE
DHAxR, DHIDxR

0 AHAx R},
0 DHAXR;

where x denotes the Hadamard product and the n-th
column of D is d(6,) = a—‘;glh,:,‘,

The matrices R, R, and R,, for p,s = 1,..., P
are N-by-N with elements,

K
(R)wt = D aa(te)af (ts)
k=1

K «
(Rodot = 3 (1) 28)
k=1

dbip
K. 0g,(te) 0g; (1)
—- § :__" hat {74
(RP-')"I = & abnp 6bz, (11)

These matrices summarize the temporal characteris-
tics of the sources. In the following we shall refer to
them as the source matrices.

To assess the potential gain that can be achieved
by spatial-temporal processing relative to conventional
spatial processing we compare the bound given by (9)-
(10) to the CRB for the case where no prior infor-
mation is available on the temporal structure of the
signal. In this case the samples of the source signals
are assumed to be unknown deterministic parameters
varying from snapshot to snapshot. This bound was
derived in [4] and is given by,

CRB:'(9) = %Re{DH[I — A(A A)"1A¥]D x RT}
(12)

We will refer to this bound as the conventional bound
and to the bound given by (9)-(10) as the model-based
bound.

The single source conventional bound is given by,
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CREO) = 5 FH@aG) - Flar@R@F

where E Zf=1 lg(tx)|? is the signal energy.

First, consider the case where the source matri-
ces are diagonal. In this case each source signal and
its derivatives with respect to the model parameters
are orthogonal to all other source signals and their
derivatives. This orthogonality assumption may ap-
pear quite restrictive. However, it can be shown that
for polynomial phase signals the source matrices are
at least approximately diagonal as long as there is no
pair of identical (or almost identical) signals. Since
Short segments of signals which have a continuous and
smooth phase and a slowly varying amplitude can be
approximated by polynomial phase signals, this as-
sumption holds for a large class of signals.

By reordering the parameters in % so that all pa-
rameters corresponding to a certain source are grouped
together the FIM becomes block diagonal. In this case,
therefore, the model based CRB for the parameters of
the n-th source is simply the single source model based
bound. This is not surprising. When the orthogonality
condition above holds, the sources can be resolved by
temporal processing yielding the single source bound.
In contrast with the model based bound, the conven-
tional bound is not reduced to the single source bound
in this case.

On the other hand we have shown that the sin-
gle source model based bound for the source direction
is the same as the single source conventional bound.
Thus, in the single source case spatial-temporal pro-
cessing does not yield any gain in performance of the
direction estimation relative to conventional spatial
methods.

Next, consider the other extreme where all source
signals are the same up to a complex amplitude. We
shall follow a common practice and refer to such sig-
nals as coherent signals. In this case we have shown
that CRB(6) > CRB.(#) where CRB,(f) is the con-
ventional bound. It follows that in the case of coherent
sources, spatial-temporal processing cannot yield any
gain in performance relative to conventional spatial
methods. Again, this result is not surprising. When
the source signals are coherent they cannot be resolved
by temporal processing. Then the bound coincides
with the conventional bound which predicts the per-
formance of spatial methods.

We now consider the intermediate case where the
source matrices have full rank, but are not diagonal.
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For this case we will not attempt to obtain analytical
results for arbitrary source geometry. Instead, we will
examine the case where all sources have the same di-
rection. In this case the signals cannot be resolved by
spatial processing.

Theorem 1 Denote by R the following matrix,

R=| : : : (14)
Rp1 -+, Rpp

Assume that R is non-singular. Let NV sources im-
pinge on the array from directions {6;,...,0x5}. De-
note by CRB(6,) the model based bound for the di-
rection of the n-th source. If a(6,) = a(f) for n =
1,---,N

2 1
nE df (6,)d(0n) ~ 57 |d# (8a)a(fn)|?
(15)
which is the single source bound. The proof is given
in [5].

CRB(f,) =

The above theorem suggests that as long as the
source matrices are not singular or close to singular,
spatial-temporal processing can approach the single
source performance. This conjecture is verified by nu-
merical experiments in the following section.

4. POLYNOMIAL PHASE SIGNALS
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In this section we assume that u,(t) is constant in
time and ¢,(t) can be approximated as a polynomial
function of time. Then the baseband n-th signal is
given by

P-2

qn(t) = anexp{j Z Tnpt? } (16)

p=0

We consider three bounds: The exact model based
bound given by (10), the approximate model based
bound obtained by replacing the source matrices by
their diagonal estimates and the conventional bound.
Note that the approximate model based bound for
each of the source directions is simply the single source
model based bound for that source.

We study the CRB for the following pair of quad-
ratic FM signals.

inlt) = aexp{2ntafy(—t+ 22~ =510} (17)
where n = 1,2, f, is the sampling frequency and &; =
0.4. & assumes the values {-0.4,0.39,0.396,0.4} in
cases 1,2, 3 4 respectively. We assume that the antenna
array is an equispaced linear array. The array is com-
posed of 8 elements with inter-element spacing of A/2
where A is the wavelength of the carrier. Note that the
array beamwidth is approximately 13°. The number
of sources is known and equal to 2, and the number of
available snapshots is 512. The direction of the first
source is fixed at 0° while the direction of the second
source is varied according to the source separation.
Results are given for the first source.

The results are shown in Figure 1 where we fix
the SNR at 0 dB and plot the standard deviation
as a function of the source separation. Case 1 rep-
resents the case where the source matrices are approx-
imately diagonal. Note that in this case the signals
occupy the same bandwidth [-0.4f,,0.4f,]. We ob-
serve that the approximate model-based bound co-
incides with the exact bound, verifying that, in this
case, the exact bound can be approximated by the sin-
gle source bound. The standard deviation predicted
by the model-based bounds is significantly lower than
the standard deviation predicted by the conventional
bound. The gain in performance increases for decreas-
ing source separation. In this case, As predicted by
the results of Section 3, spatial-temporal methods can
yield significant gain in performance relative to spatial
based methods. In case 2 the source matrices are not
diagonal but are not close to singular matrices. In this
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case the model based bound predicts near single source
performance as anticipated by our earlier conjecture.
In case 4 the source signals are coherent and the model
based bound coincides with the conventional bound.
Not surprisingly, intermediate results are obtained for
the intermediate case.

5. CONCLUSIONS

Assuming that the source signals obey a determin-
istic parametric model, we used the Cramer Rao bound
to study the potential gain in spatial-temporal pro-
cessing vs. conventional spatial processing. We have
shown that for the single-source case, spatial-temporal
processing cannot yield any gain in performance rel-
ative to conventional spatial methods. For multiple
non-coherent signals, incorporating temporal process-
ing can achieve the single-source performance, yielding
a significant gain for the case of multiple sources with
small spatial separation relative to the beamwidth of
the array. However, spatial-temporal processing can-
not yield any gain in performance for multiple coherent
signals.
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