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ABSTRACT

We consider beamforming and Capon direction of ar-
rival (DOA) estimation using arrays of acoustic vec-
tor sensors. We derive an expression for the Cramér-
Rao bound (CRB) on the DOA parameters of a single
source. Using this, we give conditions that minimize
the lower bound on the asymptotic mean-square an-
gular error, and conditions that ensure it is isotropic.
The asymptotic performance of the Capon and beam-
forming estimators is analyzed and compared with a
scalar-sensor array. The vector-sensor array is seen to
have improved performance due to its elements’ direc-
tional sensitivity. Large sample approximations for the
mean-square error (MSE) matrices of the estimators
are derived. Throughout, we compare vector-sensor
arrays with their scalar-sensor counterparts.

1. INTRODUCTION

The use of acoustic vector-sensor arrays for DOA esti-
mation has recently been proposed in [1]. Each vector
sensor measures the acoustic pressure and the three
components of acoustic particle velocity at a particular
point in space, in contrast to traditional hydrophones
(scalar-sensors) that only measure acoustic pressure.
Vector sensors have already been constructed [2] and
subject to sea trials [3]. In [3], a DOA estimation trial
was conducted but no analysis was done on the per-
formance of the estimators, nor any comparison made
with a comparable scalar-sensor array.

We consider an array of vector sensors, illuminated
by n narrowband, Gaussian signals in spatially and
temporally uncorrelated Gaussian noise. In Section 2,
we introduce the mathematical model. In Section 3, we
use the results of [1] to derive expressions for the CRB
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and MSAE.g (a lower bound on the asymptotic mean-
square angular error [4]), in the case of a single source
in 3-D space. We give conditions on the array geom-
etry such that the MSAE_y is minimized for a given
array size, leading to better performance. We also give
conditions such that the MSAE.y is independent of
the actual source direction, i.e. the array’s response is
isotropic. The CRBs of scalar-sensor and vector-sensor
linear arrays (LAs) are compared.

In Section 4.1, we derive expressions for the asymp-
totic beamforming and Capon spectra. It is seen that
vector-sensor arrays have uniformly improved perfor-
mance over scalar-sensor arrays, and suffer less from
spatial aliasing when the acoustic field is undersam-
pled. In Section 4.2, we derive approximations for the
large sample MSE matrix of both estimators, when the
DOA has two parameters. Section 5 concludes.

2. THE MODEL

We consider n narrowband planewaves impinging on
an array of m acoustic vector sensors. We wish to de-
termine the DOA parameter vector 8 = [6,, .. .,Gn]T,
where 8y = [¢r,¥1]T, and ¢; and ¥ are the azimuth
and elevation of the kth source. We assume that each
vector sensor has its velocity sensors aligned -with the
r,y, and z axes. With this assumption, the array’s
steering vector is

a(6) = d(8) © h(8), (1)
where ® is the Kronecker product,

d(e) —_ [eiwc(u(e)Trl)/c, . eiwc(u(e)fr,,.)/c]T (2)

and h(0) = [1,u(8)]7; here, 7 is the position vector of
the kth sensor, u(8) is the unit vector in the direction
from the array to the source, w, 1s the center frequency

and c is the speed of sound (assumed constant). The
vector d(8) is the steering vector of a pressure-sensor
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array of the same geometry, while h(®) accounts for
the directionality of each component: omni-directional
for the pressure sensor and a cosine response for the
velocity sensors. See [1] for further details.

With n sources, the output of the array at time ¢ is

y(t) = A()=(t) + e(t), 3)

where the transfer matrix is A(0) = [a(6y),...,a(8,)].
The signal vector () contains the complex envelopes
of the n sources. The vector e(t) is a complex additive
noise term. We assume that z(¢) and e(s) both have
the multivariate complex Gaussian distribution, and
are independent for all s and t. The signal and noise
covariance matrices are

E{z(t)x"(s)} = Pé, (4)

. o2 0
Blee' @) = o[ T 2 8 ©

where the superscript ¥ represents conjugate transpo-
sition, 2 and o2 are the pressure-sensor and velocity-
sensor noise variances respectively, and I, is the mxm
identity matrix. The restriction on the form of the
noise covariance is consistent with internal sensor noise.

3. CRAMER-RAO BOUNDS

When there is a single source, Capon and beamform-
ing techniques are known to be asymptotically unbiased
and asymptotically attain the CRB. A general expres-
sion for the CRB of an acoustic vector-sensor array is
given in [1]. For a single source

CRBs(8) = 22 2 (1+2 )J- (6)
CRB,(8) = 2”N <1+(r2—5;1%> K=Y, (7

where p, = o2/7%, p, = 0'2/17 , T = 0y/0p and p?
is the signal variance [(6) is the scalar-sensor and (7)
the vector-sensor expression]. Taking the orxgm of the
coordinate system to be the array centroid, i.e. Z ;=
0, the entries of the (symmetric) matrix J become

Top = (wo/ef’cos’ Y (r]v1)®
(we/c)? coswz,(rTvl)('rJTvg) (8)
(wc/C)ZZ (r]va)?,

where the sums are over the number of sensors, m. The
entries of the (symmetric) matrix K are

Jop =

Jyp =

.K¢¢ = (1‘2 + 1)J¢¢ -+ mc052 1/)
Koy = (r?+1)Jgy (9)
Kyy = (r?+1)Jyy +m.

= 28/%¢ ,n4

The vectors v; and v, are defined by v, 05T
vy = Qu/0y. With these definitions, (u, vy,v2) is a
right orthonormal triad.

Compare (6) with (7), and (8) with (9). The factor
r? + 1 is a consequence of taking more measurements
and is directly due to the fact that |h(8)]? = r? + 1.
The extra additive terms in (9) also contribute to the
improved vector-sensor array performance. Their pres-
ence shows that the use of velocity sensors provides
more than a simple increase of signal-to-noise ratio
(SNR).

For a smgle source, ¢ and 1 are uncoupled from 7?2,
ap and o2 in the CRB. This was shown for a 2-D scalar-
sensor array in [5], but is also true for 3-D scalar-sensor
and vector-sensor arrays. Thus, knowledge of source or
noise power does not affect the MSAE, in this case.
Hence, (6) and (8) may be obtained from [6], which
assumes known signal and noise powers.

Minimizing the bound on estimation accuracy by
selection of array geometry will tend to improve array
performance. A very natural criterion is the asymptotic
mean-square angular error of a direction estimator. In-
troduced in [4], it is defined by

MSAE £ lim NE&, (10)
N—oo
where § is the angular error, and its lower bound is
given by [4]

MSAEcg = N[cos’ ¢ - CRB(4) + CRB(¥)].  (11)

The diagonal elements of J or K are good measures
of the array’s size. When they are fixed, the MSAE.g
is minimized by making the off-diagonal elements zero,
i.e. decoupling ¢ and ¢ in the bound. It was shown in
[6], and may be seen from (8), that a set of sufficient
conditions such that Jsy = 0 for all 8 is

Zj 7"321 = Zj r]?y (12)
ZJ_ Tigljy = Zj Tigljz = Zj riyriz =0, (13)

where r;z, rj, and r;, are the z, y and z components
of the jth sensor’s position vector. It is clear from the
form of (9) that these same set of conditions ensure
Kgy = 0 for all 6. Arrays satisfying (12) and (13)
have a certain symmetry in their z and y axes and in-
clude uniform circular and square arrays parallel to the
z, y plane and uniform cylindrical, spherical, cubic and
cuboidal arrays and vertical LAs. Under these con-
ditions, the MSAE.; becomes a function of elevation
only. If we extend condition (12) to

D=2 =0 (14)
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then when (13) and (14) hold, the MSAEsx becomes
independent of the source direction entirely; it is given
by

1+ pp/m
Pr (we/c)? Zj r?z
1+ p,/(r2+ )m
P Dwe/e)P 5y i+ m

MSAEcns = (15)

MSAEcry = (16)
for the scalar-sensor and vector-sensor arrays respec-
tively. This class of arrays, which has a symmetry in
all three axes and includes cubic and spherical arrays,
have isotropic performance, making them of great in-
terest.

The LA is of particular interest because it is very
often used in practice. For the common linear array
(LA) Jg¢ = Jpy = 0 and

Jypp = (we/c)? cos? 7. (17)
J

The entries of K are given by (9). Note that J is singu-
lar but K is not. Thus the vector-sensor LA has no am-
biguity, whereas the scalar-sensor LA can resolve only
up to a conic angle. Indeed just a single vector sensor
is enough to resolve both azimuth and elevation. In ad-
dition Jyy — 0 as |¢| — 7/2, as discussed in [7], but
Kyy remains finite. Thus, beamforming and Capon
methods (which asymptotically obtain the CRB with
one source) will have much greater accuracy near end-
fire with the vector-sensor LA than the scalar-sensor
LA.

4. DOA ESTIMATION

Beamforming and Capon’s method [8] of DOA estima-
tion involve estimating a spatial spectrum and maxi-
mizing over all possible directions. The beamforming
(Bartlett) and Capon spectra are

fs(8) = a"(6)Ra(6) (18)
£(6) [a"(6)R"'a(8)] ", (19)

respectively, where R is the data covariance matrix and
a(0) is the steering vector. In general, these spec-
tra will have many more local maxima than there are
sources, thus the number of sources must be known
a-priori. We shall denote the n largest maxima by
{6:}7—;. In general, they are not the true DOAs,
{0}z ifn>1.

The estimates of the Bartlett and Capon spectra
are obtained by replacing R by its maximum likelihood
estimate R in (18) and (19). We denote these spectral
estimates f, and fc respectively. Asymptotically, R —

R, almost surely, hence fB — fz and fc — fc almost
surely for all & € ©. The distributions of fs and fc
are given by [9]

Nfa(8)

.00 (N, 1) (20)
Nf(8) .

7-(0) (N +1,1), (21)

for the scalar-sensor array, where I'(«, 3) is the gamma
distribution with shape parameter « and scale parame-
ter . The arguments of [9] apply mutatis mutandis in
the vector sensor case, giving that (20) and (21) hold
if m is replaced by 4m. The DOA estimates are the n
values of @ corresponding to the n largest maxima of
fs or fc and are denoted {0 }%-;.

4.1. Asymptotic Spectra

When there is a single source from direction 8o, the
Bartlett spectra for scalar-sensor and vector-sensor ar-
rays, normalized such that the maximum is unity, are

2" (8)d(60){* + mp

fB,S(B) = m2+mp (22)
(1405 7)? " (8)d(80)|2 + 2mp
fo(8) = o s (23)

where 7 is the angle between the direction to the source
u(6p) and the direction of look %(8) (we have chosen
o2 = o2 for convenience). Thus f5v(8) < f5,5(8) for
all 8 € ®, with equality holding if and only if 8 = 6.
So for vector-sensor arrays, the Bartlett spectrum has
a sharper peak and uniformly lower sidelobes, leading
to better resolution and smaller estimation errors.

It is the term (1 + cosy)? in (23) that provides the
real impetus for using vector sensors. It arises from
the inherent directional sensitivity of each sensor, and
is what allows resolution of both azimuth and elevation
by any array. The same term also means vector-sensor
arrays suffer less from spatial aliasing. If the wavefield
is undersampled, aliasing occurs in the spatial domain.
With scalar-sensor arrays, grating lobes may appear
— secondary peaks at the same height as the mainlobe
that do not correspond to actual sources — hence, the
DOA cannot be determined unambiguously, no mat-
ter how many snapshots are available. However, since
fav(8) < fav(80) if @ # By when a vector-sensor array
is used, the grating lobes are no longer as high as the
mainlobe, so we can determine the DOA given enough
data. The term (1 + cosy)? plays a similar role in the
Capon spectrum, and the above comments apply. We
also note that f(8) < fa(8) for both types of sensor
with equality at 8 = 8.
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4.2, MSE Approximations

An MSE approximation for the Capon estimator has
been presented in [10] for a 1-D DOA parameter space.
Using a similar approach, we derive MSE approxima-
tions for both estimators for a 2-D parameter space,
applicable to scalar-sensor and vector-sensor arrays.
For large IV, E{é} is very nearly 8, so the MSE is

MSE(8) ~ (6 — 6)(6 — 6)T + C(6), (24)
where
CB) =E@B-6)6-0)T. (25)
For the beamforming estimate
CO) ~[FO)I~'GBFO)T, (26)
where
5 _ 0°f(8)
P = 80067
= 2R{D"(@)RD(8)+ H(6)}, (27)

oo = o [210

-

- [D”w)Ra(o)] [D"(8)Ra(8)]" } ,(28)

- = T
[6f(9)}
06

(6)Ra(6) [D*(6)RD(6))

~ da(8) da(0
p@) = |20 20, (29)
Hpypoia®  u/p p22ad)
g@) = | C O O o)
a”(B)R%G3 a”(B)RIE

The above expressions hold for both scalar-sensor and
vector-sensor arrays. For the Capon estimate R is ev-
erywhere replaced with R=! above. Note that (28) then
only holds approximately.

For any scenario, the MSE is estimated by numer-
ically maximizing f(8) to find @, then using (24) and
(26)-(30). In the case of a single source, both the
beamforming and Capon MSE approximations equal
the CRB. This agrees with the fact that beamformingis
known to coincide with maximum-likelihood estimation
in the single-source case. This is true for both scalar-
sensor and vector-sensor arrays and it follows that the
MSAE attains its lower bound, the MSAE 5.

5. CONCLUSION

The performance of acoustic vector-sensors for DOA
estimation in 3-D space has been examined. The CRB
for a single source was derived and conditions on the

array geometry that minimized the MSAE . and made
performance isotropic were obtained. Expressions were
given for beamforming and Capon spectra for the single
source case. It was shown that the inherent directional
sensitivity of vector-sensors gave them better perfor-
mance and helped reduce spatial aliasing in the case
that the wavefield is undersampled. An approximation
was given for the large-sample MSE matrix of beam-
forming and Capon DOA estimates.
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