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Abstract

This paper studies the Cramér-Rao (CR) bound for the
problem of estimating the directions of arrival of narrow-
band plane waves impinging on an ESPRIT array with
multiple displacement invariances. We call this bound the
MI-CR bound. The CR bound for ESPRIT arrays with a
single invariance was derived in [1], and called the ESPRIT-
CR bound. The difference between the ESPRIT-CR bound
and the MI-CR bound can be large, especially for highly
correlated sources. We give examples to show that a re-
cently proposed algorithm called WSE achieves the MI-CR
bound derived in this paper.

1 Introduction

ESPRIT [2] is a popular subspace-based approach to
array signal processing and other related parameter esti-
mation problems. Since it was proposed, ESPRIT has re-
ceived much attention because of its robustness and com-
putational efficiency. The original ESPRIT is formulated
assuming that an array consists of two identical subarrays,
separated by a known displacement vector. This struc-
ture arises naturally in applications such as radar, radio
communication, underwater acoustics, seismology and etc.,
where uniform linear arrays (ULAs) are commonly em-
“ployed. The original formulation of ESPRIT only takes
advantage of a single invariance of the array. When multi-
ple invariances exist, such as in a ULA, the ESPRIT algo-
rithm can be applied by using overlapping subarrays. But,
the additional structure of the array can not be optimally
exploited. Thus, before any effort is made to improve ES-
PRIT, it is of great interest to study the best achievable
performance, i.e., to derive the Cramér-Rao bound based
on the multiple invariance ESPRIT parametrization. In
[1], an ESPRIT-CR bound is derived under the assump-
tion that only a single invariance exists. In this case, it is
shown by numerical examples that the ESPRIT algorithm
is asymptotically efficient. In [3], an algorithm for estimat-
ing the directions of arrival of narrow band signals with
multiple invariance ESPRIT arrays was proposed. But {3]
does not contain any CR bound other than the one for the
case of a uniform linear array with identical sensors. In
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this paper, we provide more general CR bounds for multi-
ple invariance ESPRIT arrays. Numerical example shows
that, for this case, the ESPRIT algorithm is not efficient,
but the derived MI-CR bound is attained by a recently
proposed algorithm called Weighted Subspace Estimation
(WSE) (4, 5].

2 Basic Assumptions

Assume that there are p narrow-band plane waves im-
pinging on an L-sensor array. The narrow-band assump-
tion makes it possible to represent the propagation delays
as simple phase shifts. The output of the array is the su-
perposition of the individual emitter signals, weighted by
the array response, and can be expressed by the following
model:

¥(k) = A(9)s(k) + n(k),

where §(k) € CL*! is the noisy observation vector, n(k)
is noise vector sampled from a random process which is
uncorrelated with signals, the matrix A € CE*? contains
the array response (steering) vectors, and s(k) € CP*! is
the unknown vector of wave amplitudes. It is assumed
that only the azimuth angle is of interest, leading to a one
parameter (per source) problem. Thus, the unknown DOA
vector to be estimated from the array output is

9=1[6 6, - 8, (2)

In an ESPRIT array with only one invariance, the array
is made up of two identical subarrays. They are aisplaced
by a known translation vector A. The information about
DOAs is embedded in the following matrix of phase delays
between two subarrays for the p wavefronts,

k=1, K, (1)

- eJ(Zr/,\)Asmel . 0

%= : : . 3)

0 . rpgj(’.’r/A)AsinB,

In the above equation, ri = 1 fort =1,.-.,p, A = [fA
and X 1s the wavelength of the incoming signals.

In an array with multiple invariances, a subset S' con-
tains sensors with unknown response patterns. The ar-
ray contains other subsets of sensors, S},53,---, S;l with
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the following two properties. First, the sensors in each
S! are physically displaced from the sensors in S! in the
direction of a fixed translation vector A; ( the length of
A; corresponds to the smallest translation). Second, the
sensors in each S! have the same responses as the corre-
sponding sensors in S'. The number of sensors in each
S! must be less than or equal to the number fo sensors
in S'. Also, the array may have other sets of sensors,
{S™, 80,87, -,5m}, m=1,---, M, satisfying the two
properties described above. .

The emitter signals in (1), s(k), are modeled as zero-
mean, complex Gaussian, temporally white random vari-
ables with covariance matrix

Q, = E[s(k)s” (k)] (4)

It is assumed that £, is a completely unknown Hermitian
matrix. The noise sequence n(k) also has zero mean and is
both temporally and spatially white with variance o?. The
array output covariance matrix is then given by

R = E[F(k)y" (k)] = AQAT + %L (5)

We assume that both the signal covariance matrix, .,
and the steering matrix, A, are of full rank; thus, coher-
ent (completely correlated) signals are not allowed. Also,
the steering matrix A is uniquely determined, up to an
arbitrary scaling of the columns [1]. For convenience, the
elements of the first row of A are customarily fixed to unity.
In addition, the requirement for no ambiguities when ob-
taining the DOA estimates from the eigenvalues of & de-
termines the range of DOA’s. From (3), we see that to
uniquely obtain the DOA estimates, the arguments of the
eigenvalues of ® must satisfy

—x< %\lasino.- < (6)

For a multiple-invariance array, A in (6) is the norm of
the smallest translation vector in the array. If the range of
DOA’s is (—#/2, #/2), this inequality implies
A
A<=, 7
<3 )
Based on the assumptions stated above, we now proceed
to derive the CR bound for a multiple invariance array.

3 MI-CR Bound

Under the Gaussian signal waveform assumption, the
array output is a stationary, temporally white, zero-mean
complex Gaussian random process with covariance matrix
R given in (5). The normalized negative log likelihood
function of the observations ¥(1),---,#(K), has the fol-
lowing form:

1(6) = Llogr + log|R(¢)| + te{R}(&)R},  (8)

where ¢ is the unknown parameter vector, and R is the
sample covariance matrix of the noisy array outputs defined
as

K
R=2) y(h5” (k). 9)

It can then be shown that the Cramér-Rao inequality is
implicitly given by

K x B¢ ~ &)(¢ - ¢,)"] > CRBM (10)
(CRBM™);; = tr{R™' R, R™'Ry;}, (11)

where (CRBM ™'),; is the ijthe element of CRBM™!.

Thus, the key for the calculation of the MI-CR bound is
to obtain a correct parametrization of the steering matrix
A (or R), determine the unknown parameter vector, and
then compute the first partial derivative of R with respect
to the unknown parameters. We provide the following pro-
cedure to do this:

1. Find the phase delay matrix ®; for each of the sensor
sets S* described in the previous section,

rleJ(Zﬂ'/f\)Aismel 0.

0 TpeJ(zw/A)A;sine,

(12)

The true values of r;, 1 =1,---,p are all equal to 1.

2. Let A; be the array response matrix for the sensors
in S*. Let A;j = 8i; - A; be the displacement vectors
for the sensors in S}; by convention, é;; = 1. Then,
the general form of the steering matrix A can then be
written as

A,
A,
A= . , (13)

A'M
A;

JiaA;®
8;
A= | JnAdi® (14)

Jig Ai®lin

where each Ji; is either an identity matrix , or some
subset of the rows of an identity matrix which is used
for the case where some S} has fewer sensors than S*.

3. Determine the unknown parameter vector £.

Using % to denote the real part of the element z and
z for the imaginary part of z, the unknown parame-
ters of the steering matrix A can be collected in the
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following vector,

(15)

where A] is A; excluding the first row. This is because
the first row of the steering matrix is fixed to unity as
discussed in the previous section.

The whole unknown parameter set then includes
¢,, the parameters from ®;, the components of £,
which are

{Qs}ii, t=1,--+,p (16)
84 {Qs}ijy i=1y"',P,j=i+1:""P(17)
§ij {Ql}ij! i=11"'1p1j=i+17“'7p(18)

»
n

G
-
<

I

and ¢2.
In the case of M = 1, the unknown parameter

vector can be expressed as

f = [ Tir0i7i=11"’)py

-, n, J= 1,---,p,

,P, J=t1+1,--,p ]T

(19)
where a,; 1s the ijth element of A1, ai; and 4;; are
real and imaginary parts of a;j, respectively, and n is
the number of unknown sensors. For M > 1 cases, the
parameter set will be expanded to include elements of
Az, Az, -+, Aar.

4. Take the derivative of R with respect to the unknown
parameters. This step is straightforward. After the
results are substituted into (11), the CR bound matrix
CRBM is obtained, and so is the MI-CR bound.

2
a 1
Gij, Gij, 1=2,°*
Si, §ij, 845, =1,

4 Numerical Examples

We now use examples to detail the procedure of the
MI-CR bound calculation.

First, let us examine a line array of 8 sensors in Figure 1.
This line array has two sensors of unkown response (n = 2).
From the left to the right, if the first two sensors constitute
the subset S, then the next 6 sensors form subsets S},
S} and S}, respectively. We denote the steering matrix
corresponding to sensors in S* as

1 e 1

A= _ . _ . 20

! [ @21 + Ja&21 @2p + Jd2p (20)

Then, the steering matrix A is given by A; in (13) with

M =1, g1 = 3, and all J;; matrices are identity matrices.
The complete parameter set is given by (19) with n = 2.

For the case of 200 snapshots and the correlation coeffi-
cient 0.99 of two emitter signals, we have calculated MI-CR
bound when the DOAs are [~7°, +7°]. This bound, to-
gether with the simulation results using ESPRIT and the
newly proposed algorithm — Weighted Subspace Estima-
tion (WSE) [4, 5] are displayed in Figure 2. For the ES-
PRIT algorithm, the choice of the subarrays is shown in
Figure 1. Figure 2 shows that, the performance of WSE
achieves or is very close to the MI-CR bound.

Next, we consider a more complicated array configura-
tion as shown in Figure 3 where 14 sensors are arranged in a
block-wise uniform triangular form. The identical sensors
are indicated by a common grayscale. The figure shows
that there are 4 sensors whose responses are assumed to
be unknown. Let A; be the steering matrix for sensors 1
and 9, and .A; be the steering matrix for sensors 5 and 12,
and let ® be the phase delay matrix corresponding to the
displacement A = A/2. Then the steering matrix for the
complete array has the form

|

A, -

A ®
A=) et |
[ A ®°
- A, -

A @
A2 - A2§2 s
L 6{.42‘}3
where ¢; is a unit vector with the first element being 1.
After the derivatives of R in (5) are taken with respect to
the unknown parameters and the result is substituted into
(11), the CR bound can be calculated numerically, and the
result is plotted in Figure 4. Also shown in this figure are
the simulation results of ESPRIT and WSE. The subarray
choice for the ESPRIT algorithm is shown in Figure 3.
From Figure 4, we can see that the performance of ESPRIT
is far from the MI-CR bound, while WSE is much closer to
the bound.
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Figure 1: An example of line array.
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Figure 2: RMSE versus SNR for correlated sources
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Subarray 1: miangles 1, 2, 4, 5;

Subarray 2: tiangles 2, 3, 5, 6.

Figure 3: The geometry of block-wise uniform triangular array
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Figure 4: RMSE versus SNR for correlated sources



