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ABSTRACT

A comparative study of the statistical performance of
the MUSIC and minimum variance distortionless response
{MVDR) direction of arrival (DOA) estimators is presented.
Their relative performance due to given modeling errors is
studied. In particular, we study the sensitivity of the esti-
mators to modeling errors in the signal and noise structures.

1. INTRODUCTION

Direction of arrival (DOA) estimators include eigenspace
based (e.g. MUSIC [1]) and spatial filter based (e.g. the
minimum variance distortionless response (MVDR) [2]) tech-
niques. A comprehensive comparative study of the statisti-
cal performance of the MUSIC and the MVDR estimators
is important, but comparisons based on analytical expres-
sions of estimator performance have been ignored in the
literature to date. This paper provides an analytical study
of the estimators. Our objectives are to provide a quanti-
tative understanding of their relative performance due to
given model errors, and to inspire further study. In par-
ticular, we will study the sensitivity of these estimators to
modeling errors in the signal and noise structures.
Eigenspace based spectral methods have very high res-
olution properties and are based on the assumption that
the signal observation belongs to a low rank subspace in
spatially uncorrelated noise. However, these methods are
sensitive to the white noise assumption and to incorrect
model order selection. When these assumptions do not
hold, DOA estimates will be biased and hence the meth-
ods will exhibit lower resolution. On the other hand, the
MVDR method is not very sensitive to these assumptions.
However, compared to eigenspace methods MVDR exhibits
decreased resolution, at low SNR, under the additive white
noise assumption {3]. The low resolution of MVDR is due to
the fact that the DOA estimates are asymptotically biased®.
The performance is compared for small random per-
turbations in the signal and noise models. The bias and
standard deviation of the DOA estimate due to these ran-
dom perturbations will provide the mean and the standard
deviation, for particular realizations of the model errors, on
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1Asymptotic implies that the number of snapshots tends to
infinity.
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the asymptotic bias obtained when processing under exact
modeling assumptions. Relative finite data effects are con-
sidered as well. Since the asymptotic bias is related to the
resolution properties of the estimators, we use its moments
due to small perturbations for comparing the estimators.
Not addressed here is the issue of model order selection
of MUSIC. We use a signal subspace dimension equal to
the number of sources. While in some perturbation cases
MUSIC might perform better by selecting a different signal
subspace dimension, generally the need for selecting order
is an additional source of degradation.

2. BACKGROUND

Consider D narrow-band non-coherent signals radiating from
source locations 61,6>,...,8p impinging on an array of K
sensors. The array response vector corresponding to each
location 4; is denoted as a(f;). The covariance matrix
(K x K) of the observation is

R=ASAY +o°%, (1)

where A = [a(6:)a(82),...,a(fp)] is the K x D array re-
sponse matrix; S and X are the signal and noise covariance
matrices, respectively. S is assumed to be full rank (no
coherent signals).

Assuming that the noise is spatially white (X = 1), an
eigendecomposition would give

R = EgA;Es + EnAnEn: (2)

where E, = [e1,---,ep] spans the signal subspace with
A, = diag(\1, -+, Ap) and E, = [ep41,- -, ex] is orthog-
onal to the signal subspace with A, = diag(02,~--,02).
This property of orthogonality is exploited in MUSIC to
form the null spectrum

fuu(8) = a¥ (O)E.EF a(9). (3)

The DOA’s are estimated from the minima of fyu(8). Fi-
nite data effects or small perturbations in the signal or noise
model will perturb the null spectrum and lead to a bias in
the estimates denoted by Anmu8;.

The MVDR spectrum estimator estimates the DOA’s
from the minima of the function

fuv(8) = a" (9)R ™ a(8). (4)

0-7803-2431-5/95 $4.00 © 1995 IEEE



Since the estimates are biased, the asymptotic location es-
timates are denoted by 6;,81 =1,2,.--, D. Let

Amvi = (6 ~ 0;) (5)
denote the asymptotic bias, and define
Amvli = (é. - 5,) (6)

to be the additional bias of the estimator.
To compare the performance of the estimators, the sta-
tistical properties of Apmuéd: and Axvé: have to be ana-

lyzed. Variance and bias expressions for A au8; for eigenspace

based spectrum estimation methods have been derived un-
der different settings in [4], [5], [6]. Performance of the
MVDR method, under finite data effects and model per-
turbations in the signal and noise models, has been studied
in [7]. With the aid of the analytical expressions derived in
the references mentioned above, we will present compara-
tive study of the variance and bias of these estimators under
different scenarios.

3. COMPARATIVE STUDY

For the study presented the following scenario is assumed.
Two sources with equal signal strengths at 10° and 20° are
considered. A 10 element uniform linear array with half
wavelength spacing is chosen. The noise is assumed to be
white. The array response vectors are all normalized to
one and the signal to noise ratio (SNR) is computed as

10log %’,-‘

3.1. Performance criteria

In the case of MUSIC, if the noise is not spatially white (and
assuming no knowledge of the noise covariance structure) or
if the model order is not determined exactly, the asymptotic
estimates would be biased. We would then get two terms
contributing to the bias, i.e. Axp8; and Anpy8;. To exploit
the results in [4], [6], the comparison results presented here
are for the case when the noise is assumed spatially white.
For small signal and noise model perturbations, the per-
formance of these estimators has been studied [6], [7]. In
practice, we might have one realization of these errors and
thus the moments of the estimates will provide the mean
and the standard deviation, for a particular realization of
the model errors, on the asymptotic bias. We compare the
standard deviation of these estimators and the asymptotic
bias of the MVDR estimator due to different modeling er-
rors. Note that the statistical or perturbation bias term for
MUSIC and the additional (statistical) bias term for MVDR
is also an important measure in some situations, but they
are not considered here. Effects of finite data lengths are
also analyzed. For a particular example of correlated noise
structure, we will compare the asymptotic biases.

3.2. Finite data effects

The variance expression for MUSIC is given by® [4]
D 2

1 ZE e @esl?

N Frau(8:)

2~ denotes an approximation.

E(AMuai)z o~ (M

For the MVDR spectrum estimator the variance of the DOA

estimates are given by [7]

2(N = K)Re[a(6)R'B(4;)R"a(6;)]
(N =K —1)(N ~ K +1)f2,,(6:)

E(Amvbi)? ~

(8)
where . . _ . .
B(6:) = a(di)a” (6:) + a(d:)a” (9:). (9)
In the above expressions, ¥ and ¢ denote the first and sec-
ond derivative of the function »(#) with respect to 8, re-
spectively.

Figure 1 shows the standard deviation for the two es-
timators. The number of snapshots are assumed to be 50.
The dotted line shows the asymptotic bias of the MVDR
estimator. For large SNR’s, the standard deviation is the
dominant term and the performance is similar for both
the estimators. At low SNR’s, the asymptotic bias lim-
its the MVDR estimator. The asymptotic bias also limits
the MVDR for sources spaced closer at high SNR’s.

We next study the effects of modeling errors on the per-
formance of the estimators. Two cases are considered in-
dependently; the effects of randomly perturbing the array
response model and randomly perturbing the noise covari-
ance structure.

3.3. Array model perturbations

For the array response vector case, the errors are taken to
be additive to the actual response matrix A, i.e.

A=A4+AA (10)

The performance is studied for the case where the pertur-
bations are random, zero mean, with the following second
order moments®:

E[aa(8;)Aa" (8,)] = 6:; ¥ (11)
E[Aa(8;)aaT(6;)] = 0. (12)

The variance for MUSIC is given by [6]

2
2y A Ta 1
EBuol) = 5 woE. ey (1)
Define

& = AS?A%. (14)

For the MVDR estimator the variance is given by [7]

E(Apv?) ~ ?2——2@ Re[a™ (6,)@"B(6:) ¥ ™a(6:)
MYV

+a%(6,)¥"*B(6:)@%a(d))], (15)
where

2P=R7'®R™! & ¥ =RT'ER'. (16)

Figure 2 shows the the standard deviation for the two
estimators. For this example, we choose ¥ = 02I. The
performance is shown as a function of the signal to per-

turbation ratio (defined as 10log %5—&) The SNR is fixed

3See [6] for a good discussion on this model.
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at 30dB (the performance was independent of SNR). The
standard deviations of the estimators are identical in this
case. The contribution to the asymptotic bias due to model
perturbation dominates the exact model asymptotic bias of
MVDR. To illustrate the behavior of the spectra of the two
estimators under ideal modeling conditions and for different
realizations of the model perturbations, example spectra for
different realizations of the model perturbation are shown in
figures 4 and 5. Observe that the spectra is peakier for MU-
SIC under ideal conditions. However, the spectra are almost
identical for the two estimators even for small model pertur-
bations. The signal to perturbation ratio was taken to be
30dB; a very small amount perturbation can lead to rapid
degradation of the MUSIC spectrum. In this general situa-
tion, and others we have considered, the performance of the
estimators is similar for different values of SNR and SPR
up to the resolution threshold. For closely spaced sources,
small perturbations in the signal model rapidly degrade the
high resolution characteristics of the estimators.

3.4. Noise covariance perturbations

The perturbations on the noise covariance matrix are as-
sumed zero mean with the following second order moments:

E[AZ ;AT Y] = p?bube;j. (17)
The variance expression for MUSIC is given by [6]
ulo* Re[(SAH(0)A(8)S) i
=2 fuu(8:) )
Similarly, for MVDR the variance expression is [7]

E(Amub;)? (18)

597 ~ 2 pe(a® (6.)R-B(3.R-a(i
E(AmvE) ~ = v(é,’)R (a” (6:)R™"B(8:)R™°a(8,)).
(19)

Figure 3 shows the plot for the standard deviation of the
two estimators as function of the signal to perturbation ra-
tio. The SNR was varied from 10dB to 30dB to 50dB;. The
signal to perturbation ratio is calculated as 10log £;. For
this case neither MVDR nor MUSIC degrade significantly.
So the exact model asymptotic bias of MVDR is the domi-
nate factor in comparing MUSIC and MVDR performance.
This case illustrates that small noise perturbations do not
significantly affect the signal subspace, and hence the MU-
SIC performs significantly better than MVDR.

3.5. Asymptotic bias

In the preceding analyses, the noise was assumed white
and, therefore, MUSIC had no exact model asymptotic bias.
However, when the noise is correlated and no knowledge of
the noise covariance structure is assumed, MUSIC will ex-
hibit asymptotic bias. Since this situation will often occur
in practice it is interesting to compare the asymptotic bias
of the estimators as a function of noise coherence. The noise
model is assumed to be of the form [3]

B = pl k. (20)

This model generates a spatially distributed source centered
around DOA 0°. Figure 6 shows the behavior of the abso-
lute value of the asymptotic bias as function of the noise

coherence factor p. Note that p = 0 corresponds to white
noise. In this example, observe that the asymptotic bias of
MUSIC is significant and increases with p.

4. CONCLUSIONS

An analytical comparison of the MUSIC and MVDR DOA
estimators is performed. The variances of the two estima-
tors due to small random perturbations in the array re-
sponse vector model are affectively identical, as are the the
variances due to finite sample effects. The MVDR spec-
trum estimator has an exact model asymptotic bias. How-
ever we’ve illustrated that standard deviation, due to small
perturbations in the signal model and certain perturbations
in the noise model, can dominate this asymptotic bias. If
this is the case, MUSIC and MVDR will perform similarly.
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Figure 6: Absolute value of the asymptotic bias.
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