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ABSTRACT

We present an analysis of the Signal-to-Interference-
plus-Noise Ratio (SINR) at the output of the Minimum
Variance beamformer. The analysis yields an explicit
expression for the SINR in terms of the different param-
eters affecting the performance, including the Signal-
to-Noise Ratio (SNR), the Interference-to-Noise Ratio
(INR), the Signal-to-Interference Ratio (SIR), the an-
gular separation between the desired signal and the in-
terference, the array size and shape, the correlation be-
tween the desired signal and the interference, and the
finite sample size.

I. INTRODUCTION

The Minimum Variance beamformer is an impor-
tant and popular adaptive beamforming technique. Yet,
in spite of its popularity and long history its perfor-
mance has been analyzed only partially.

The parameter of interest in the beamformer per-
formance is the ratio of desired signal power to the
interference-plus-noise power, referred to as the signal-
to-interference-plus-noise ratio (SINR). This ratio is af-
fected by many parameters including the Signal-to-Noise
Ratio (SNR), the Interference-to-Noise Ratio (INR), the
Signal-to-Interference Ratio (SIR), the angular separa-
tion between the desired signal and the interference, the
array size and shape, the correlation between the desired
signal and the interference, and the finite sample size.

No complete analysis of the SINR as a function of
all these parameters has been presented. All the works
[1]-[7] were confined to the analysis of different subsets
of these parameters.

In this paper we present a complete analysis of the
SINR as a function of all the above mentioned param-
eters. The analysis is based on a novel expression for
the weight vector, and on a novel definition of the SINR
introduced to handle also the case of signal cancellation,
occurring when the desired signal and the interference
are correlated.

II. PROBLEM FORMULATION

Suppose it is desired to receive only the source at
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8, referred to as the desired source, and reject all the
other ¢ — | sources, referred to as interferences.

Using complex envelope representation, the p x 1
vector received by the array can be expressed as

x(t) = a(61)s1(2) + v (2), (1)

where a(f#) denotes the p x 1 “steering vector” of the
array towards direction 8, v(t) denotes the interference-
plus-noise vector

v(t) =) a(fe)se(t) +n(t), b))

k=2

and si(f) denotes the signal of the k-th source as re-
ceived at the reference point.

The following statistical models for the noise and
signals are assumed:

A1l: The noise samples {n(¢;)} are i.i.d. Gaussian ran-
dom vectors with zero mean and covariance matrix

o1, where I denotes the p X p identity matrix.
A2: The signal samples {s(t;) = [51(t:), -, sq(t:)]T}

are i.i.d Gaussian random vectors, independent of

the noise samples, with zero mean and arbitrary

¢ x ¢ covariance matrix C.

Notice that the correlation amongst the signals can
be arbitrary. Specifically, the desired signal can be fully
correlated with the interferences, as happens in the case
of specular multipath propagation and “smart” jam-
ming.

Assuming that the direction of the desired signal,
61, is known, the output of the Minimum Variance beam-
former is given by

s1(t) = whx(1), (3)

where w is the adaptive weight vector given by the well
known expression

1 .
w = ———R1a;, (4
affR-1a; ! )

with a; standing for a(f;) and R denoting the sample-
covariance matrix computed from m samples of x(t) at
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time instants £y, ...,tm,

m

1
R=— Ox(t:).
™ Z (ta)x™ (t:) (5)
i=1
The problem is to derive and analyzed the ratio of
the desired signal power to the interference-plus-noise
power, namely the Signal-to-Interference-plus-Noise Ra-

tio (SINR), at the beamnformer output.
III. THE WEIGHT VECTOR

In [8] we show that the MV weight vector (4) can
be expresed as

w = ——-—————1 Q‘lal - [I

a{JQ'lal

_ Q~'ajaff
a{{Q‘lal

]@%(m

where 1 denotes the sample-mean of the correlation be-
tween the desired signal and the interference-plus-noise,

= =3 vn) )
i=1

and Q denotes the sample-covariance of the interference-

plus-noise,
m

= 1 (i
Q= pouy ;V(t,)v (t:)- (8)
This expression displays clearly the decomposition
of w into the desired value and the undesired perturba-
tion, caused by the finite sample-size and the correla-
tion between the desired signal and the interferences.
Indeed, the first term is the ideal weight vector, i.e,
the one that maximizes the signal-to-interference-plus-
noise-ratio, while the second term can be regarded as
a perturbation, resulting from the sample-correlation r
between the desired signal and the interference-plus-
noise. Notice that because of the finite sample-size, this
sample-correlation is nonzero, with probability one, even
if the interference is uncorrelated with the desired signal.
To facilitate the analysis we approximate w by mod-'
ifying (6) to the following expression,

1 -1 —1.
~_ _P 3
w a{IQ‘lalQ a; Q7 'r (9)

where we have replaced the sample-covariance Q by the
exact covariance

Q = E[v(t)vI (1)}, (10)
and denoted by P the oblique projection
Q'1a1 a{{
P=1I- —F———.
al’Q-1a; (11)

Though this approximation is rather poor for very low
sample-size, t.e., for m = p, it is valid for large sample
size and even for moderate sample size, i.e., for m >
3p, and turns out to have a very marginal effect on the
SINR. Indeed, from the analysis of Reed et al. [67}, who
considered the case that the desired signal is absebt from
R and hence w is given by the first term of (6), when
m > 3p the effect of replacing Q with Q in the first term
of (6) causes an error of about 1.5dB in the SINR. The
effect on the SINR of replacing Q by Q in the second
term of (6) is also marginal since the sample-correlation
I still captures most the finite sample-size effect.

IV. GENERAL EXPRESSION FOR SINR

Consider the Hilbert space with the inner product
(u(t), v(t)) = Elu(t)v*(t)], where * denotes the complex
conjugate, and E[-] denotes the expectation operator.
In this space we can decompose §1(t) into the following
orthogonal decomposition

Sl(t) = ksl(t)-'rﬁl(t), (12)
where k is a complex scalar and 71 () is orthogorial to
s1(t), te.,

Elsi(1)a1(1)] = 0. (13)
Multiplying (12) by s} (), taking expectations and using

(13), we get [ ]
Els:(1)si(t)
£l O] 9
That is, k is essentially the correlation coefficient be-
tween the beamformer output and the desired signal.
The SINR at the beamformer output can be readily
obtained from (12). Indeed, since the signal power is
given by E[|ks;(t)}*], while the noise power is given by
E[|51(t) — ks1(t)]?], we get
E(lksy(t)F]
(18:1(t) — ks1()*]’
which by inserting (14) yields
|E[51(8)s7(1)]>
(s (O)PIE(s:(D12] = |E[s:1(8)s1(£)]1*
Carrying out the expectations in (16), using (3) and (9),
we get [8]

k=

NR =
SINR % (15)

SINR = (16)

~

)
SINR = ——, 17
where S denotes the desired signal power
affQ'r

S =~ ol + 2Re{ }—2afPQ!r

a{IQ—lal

1 jaffQ-1y)? 1 r7PQ~1r Hon
+ = f; 1,32 ‘52 AHO-1 Re{a; Q 11‘},
75, (al Q al) g5, A1 Q a

1 ,
+ 'Tll'HPQ—ll‘h

(18)
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while I + N denotes the interference-plus-noise power

. 1 P—=1 o | HpA-1.
I+x\"2.HQ_1a1+ — o, +r"PQ 7y
W2 H -1
LI Rt gy
o} (affQ~1a;)? ol aff Q-
1
- T4 II.HPQ—II.IQ’
51
(19)

where r = E[s}(¢t)v(t)] and o2 = E{}s:(¢)]*].
V. SINGLE INTERFERENCE CASE

In the case of a single interference the SINR reduces
to

SINR=12 (20)

6 H

where

IN Rlas|*lo*(1 = |af? )]

INRJasl®(1 - |o]?) + 1

az|*}p]?|e?

[INRlaz|?(1 — |a[®) + 1]2SIR

2]ay |Jaq|[(IN Rlag{*(1 — |a|*)(1 = |pl*) + 1]Re{pa}
VSIR[INRlas?(1 - |a]?) + 12

v = |ag ][l -

+

21)

and

IJVRIazlz +1 +la ,_,B;l_
SNR[INR[a:P(1 = |ef) +1] " "1 T
IN R|ai[*[az]?|p|*(1 = |a]®)

IN Rlas|*(1 - |af?) + 1

IN Rlas}*|p|*(1 = |a]?)

INRJas? (1 = a?) + 1

_ laz[*lo|e]?
SIR[INRJas*(1 — [a|?) + 1]?

2IN Rlay |las]|p*(1 = [«]*)Re{pa}
VSIR[IN R|as|?(1 ~ |e|2) + 1]?

where o denotes the spatial correlation

6~

) (22)

(1-

b

H
s (23)

= adlas|’

and p denotes the correlation coefficient between the
desired signal and the interference

_ Elst@s:(0)]

03,04,

(24)

This expression allows to readily compute tlie SINR
for any given array, any number of samples m, and any

set of parameters {SNR,INR,SIR, |ai|,|aq|,|e|, |0},
characterizing the desired signal and the interference.

We next present an asymptotical analysis of this
expression in two special cases wherein it simplifies con-
siderably and allows to gain insight into the SINR be-
haviour.

A. UNCORRELATED INTERFERENCE

In case the interference and the desired signal are
uncorrelated (i.e., p = 0) considerable simplification
arise for high INR obeying INR > WGI—IQW'ID this

case (20)-(22) become
o SNR|a;|*
SINR= = Ial" + SNRlall"L— (25)
Thus, for SNR < ﬁalg)l—axlz’ we have
SINR ~ SNRla;|*(1 - |a|?), (26)
\_vhile for SVR > m, we have
SINR ~ p’_"l (27)

That is. the SINR increases linearly with the SNR, with
a slope determined by the spatial correlation between
the steering vectors; the more correlated these vectors
are, i.e., the larger is |a|, the more moderate is the slope.
For high SNR the SINR levels up at p%l.

B. CORRELATED INTERFERENCE

In case the interference is correlated with the de-
sired signal, considerable simplifications arise for high
INR obeying INR > Tll’)lasl? In this case (20)-
(22) become

SN Rla;[*(1 - |p|*)?

SINR ~
- |O| j + SN R|a|2[|p]*(1 — |p]?) + L]
(28)
y Lo 1
Thus. for SNR < mrmpmr eni-jammre Ve 8¢
SINR ~ SNRlai]*(1 = |p|*)*(1 = |a]?), (29)
e for S 1
while for SVR > PR FED e Ve get
(1 =1pl*)
SINR ~ — ! . (30)
2+ 1plP(1 - [ol?)

That is, as in the case of uncorrelated sources, the max-
imum SINR is limited. Yet, the limit in this case is
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determined primarily by the correlation coefficient p be-
tween the desired signal and the interference.

V1. SIMULATION RESULTS

To confirm the analysis and gain more insight into
the achievable performance, we present results of simu-
lated experiments and compare them with the analytical
results. The results of the simulations were computed
from the sample-average of 100 Monte-Carlo runs, with
each run consisting of 1000 samples of x(¢).

The array was a 5 element uniform circular array
with diameter d = 0.8\, where A denotes the wave-
length. The impinging sources consisted of a desired
signal and a single interference. The angular separation
between them was a parameter with three valucs: 0.2%,
0.5% and 1.04, which for the given array correspond
to spatial correlation values |a| = 0.96, |a| = 0.77 and
|| = 0.25, respectively.

In the first experiment the interference was uncor-
related with the desired signal, i.e., p = 0, the SIR was
held fixed at SIR = 20db, and the number of samples
was m = 1000. The results, presented in Figure 1, show
that the SINR rises linearly with the SNR and then
levels up at ;M5 = 1000 = 24db, as predicted by the
analysis.

In the second experiment the scenario was as in
the first experiment except that the interference was
correlated with the desired signal, with the correlation
coefficient being p = 0.4. The results, presented in
Figure 2, show that the SINR rises linearly and iden-
tically for the three angular separations, reaches a max-

i 1-p*)?
imum and then decreases to the value — =it —
foi2(1—{p|? )1+ B>

(1-0.47)° _ - . .
T r——— 7.1db, as predicted by the analysis.
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