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ABSTRACT

We perform analysis of constrained and unconstrained MU-
SIC demonstrating that (asymptotically) improved subspace
estimates always result from the use of constraints, and
(asymptotically) the variance of constrained MUSIC is less
than that of unconstrained MUSIC under either high co-
herence, large numbers of sensors, or high SNR conditions.
As part of this analysis, we study the effects of coherence
on MUSIC and derive best/worst case coherences in terms
of the variance of MUSIC. We also demonstrate that those
conditions where the variance of MUSIC is predicted to
be less than that of constrained MUSIC generally corre-
spond to conditions where MUSIC is in breakdown (and
constrained MUSIC is not). So, unconstrained MUSIC does
not achieve its predicted advantage in those cases.

1. INTRODUCTION

This paper follows a sequence of papers that dealt with
variations of MUSIC [1] involving different types of a prior:
information regarding signal directions. The variations of
MUSIC include constrained MUSIC (alluded to in [2] and
formally defined in [3]), beamspace MUSIC [4], and con-
strained beamspace MUSIC [5]. Papers containing analysis
of these algorithms include this one as well as [6, 7, 5, 8].
The material in this paper appears in expanded form in [8],
which is available by email request to di@utdallas.edu.

We assume the following correlation matrix model:
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The spectral MUSIC estimator involves evaluation of

min  f(6) = a? (9) V. VHa(s). (3)

The matrix Va corresponds to the eigenvectors spanning
the noise subspace of R, the estimated correlation matrix.
Constrained, beamspace, and constrained beamspace ver-
sions of MUSIC have a similar form, but they involve eigen-
decompositions of transformed versions of the data. If a

This work was partially supported by TARP Grant 009741-
022 and NSF Grant MIP-9203296

1657

Petre Stoica

Dept. of Applied Electronics
Chalmers University of Technology
S-412 96 Gothenburg, Sweden

.transformed estimated correlation matrix is defined accord-
ng to
§-Q"Rq=[0, U.] [’?, gﬂ] (6, 6. @
then spectral MUSIC for the transformed data is
min  f(6) =27 (9)QU.U7Q%a(0).  (3)
where Q is different for each variation of MUSIC [5].

2. CONSTRAINTS = IMPROVED SUBSPACES

In this section, we analyze the subspaces resulting from
the EVD of the original correlation matrix and compare
them to subspaces obtained from an EVD of the constrained
(transformed) correlation matrix. Based on the eigenvector
covariance relations in [9], we derived the subspace distance
(SD) (using the Frobenius norm) between the estimated and
actual signal subspaces as (derivation given in [8]):
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(The matrix E represents the error in the estimated eigen-
vectors.) The next issue we must determine is whether
the subspace distance (as specified above) is certain to be
reduced using constraints. Thus, we derive an éxpression
analogous to (6) for constrained MUSIC:

SD
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In these expressions, m is the number of sensors, ¢ is the
total number of signals, ¢1 is the number of known signals,
the A,; are the signal subspace eigenvalues for the origi-
nal correlation matrix and the A.,,; are the signal subspace
eigenvalues for constrained MUSIC. The constraining trans-
formation deflates the signal subspace, so that there are less
nonzero signal subspace eigenvalues associated with MUSIC
than with constrained MUSIC. To prove SD. < SD, we first
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substitute a change of variables on the eigenvalues in (6)
and (7). Writing g; = A; — 0 (the y; are the eigenvalues
of the no noise correlation matrix), and using the Poincaré
Separation Theorem (Corollary 4.3.16 of [10]), we have

Bsi 2 Pes,i 2 Bs(itq)- (8)
Thus for every term “—Zaﬁ = #:’_i +;‘§; in (7), thereis a
corresponding, greater th;:.n or equal to te‘rm L&""(—“i%az =
: “n(il+<n) “3'(‘:“) in (6). Also, there are ¢; ,rerr:;.ining

nonzero terms in (6), which gives strict inequality, i.e., this
proves SD. < SD.

To verify these results, we compare the distance between
the true and estimated signal subspaces obtained with and
without the use of constraints in figure 1. (Throughout the
rest of this paper, the initials UE refer to unconstrained
element space and CE refers to constrained element space.)
In this example, the array has 10 equally spaced (half-
wavelength) sensors and the signals are from 90 and 92 de-
grees. (Broadside corresponds to 90 degrees.) The SNR is
20 dB for each signal and 1000 snapshots were used for each
of 1000 trials at each point on the estimated variance curves.
The intersignal coherence phase is fixed at ¢ = Z(afaz).
This choice of coherence phase will be explained in a later
section. The coherence magnitude is allowed to vary be-
tween £0.9 — negative coherence magnitude actually repre-
sents a coherence phase shift of 180 degrees. The key obser-
vations from this figure are 1) the estimated and predicted
subspace distances are decreased by the use of constraints
and 2) the estimated subspace distances closely track their
predicted values, with and without the use of constraints.
For the negative coherence magnitudes, the subspace dis-
tances are actually decreased compared to the case with
no inter-signal coherence. For comparison, we have plot-
ted the estimated and predicted DOA variances for UE and
CE-MUSIC in figure 2. The situation is identical to that
in figure 1, except that DOA variance is plotted instead of
subspace distance.

-20 - T T

~-22F - VE-MUSIC

-24F e CE-MUSIC

-261 UE-MUSIC Theoretical b
-281 = === CE-MUSIC Theoretical 1

Scboraoe Distance (dB}
W
»

'
£

1
8

[ 30—t e e 3= He = e B aPne e Bom s e Do e e e e o M ]

!
8

~40

-1 -0.8 -0.8 -04 04 0.8 0.8 1

0.2 o 0.2
Coherence Magnitude

Figure 1: Distance between the actual and estimated signal
subspaces.
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Figure 2: DOA variance.

3. COMPARING CONSTRAINED AND
UNCONSTRAINED MUSIC

Using constraints improves the direction estimates in most
cases, sometimes dramatically, but there are (theoretical)
instances where the constraint can make things slightly
worse. However, as demonstrated in this section, cases
where unconstrained MUSIC is predicted to have lower vari-
ance than constrained MUSIC generally correspond to sit-
uations where unconstrained MUSIC is in breakdown, but
constrained MUSIC is not.

The DOA variance for the various forms of MUSIC can
always be put in the following form:

~ o?[G)is
var(8;) = >N[H], (9)

where the matrix G has terms related to the signal sub-
space for the relevant correlation matrix and the matrix H
is related to the noise subspace. As the denominator of (9)
is the same for either UE-MUSIC or CE-MUSIC, we need
only specify G for comparison purposes. For details related
to asymptotic variance of MUSIC and its variations, see
[11, 6, 5, 8]. For this discussion, assume that R. is described
by

Pll P12

.2
R—U I+[A1 Az] [Pg P22

][1\1 AL)% (10
where A, corresponds to the known signals and A corre-
sponds to the unknown signals. Then,

Gue =P + P71 (ATA)TIPTT | (11)
and
Gep =P +0’P5, (Af QeeQleAl)7'P5 . (12)

CASE 1: If the known signals are highly correlated
with the unknown signals, then constrained MUSIC always
performs better than MUSIC. If we consider a pair of sig-
nals, one known and one unknown, and then allow the cor-
relation between them to vary, as they become completely
correlated, P becomes singular. Thus, the variance of MU-
SIC approaches infinity in these cases, while the variance of
consttained MUSIC does not depend on the coherence, be-
cause the constraint effectively removes the coherence when
it removes the known signal.
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CASE 2: If the SNR is high (Pii >> o2, for all 1) or
if m >> 1, then the first term in (11) and (12) dominates
the second term in (11) and (12). In this case, to compare
constrained MUSIC to unconstrained MUSIC, we need only
compare P;zl to the lower right corner of P~'. Using the
block matrix inversion relation [12, pg. 23], we have

(P22 - PEPP,) ™ (13)

for the lower right corner of P~! and we wish to show

P;; < (P2 — PEPPL,) ™ (14)
by which we mean that (Pzz - PE Pl'llPu) -t —P;’zl is pos-
itive semi-definite. Since both P2; and P22 — P PPy,
are positive definite, we have that (14) is true by Corollary
7.7.4 of [10] and hence the diagonal elements of the lower
right corner of P! are greater than those of P5;'. This
proves that for large N, the variance of constrained MU-
SIC is always less than that of unconstrained MUSIC for
high SNR or large m situations.

CASE 3: If the known signals are uncorrelated with
the unknown signals (P12 = 0), then the performances of
MUSIC and constrained MUSIC for the DOA’s unknown
to constrained MUSIC are identical (for large N), i.e.,

Pi2=0= varuz(a) = varcz(8:). (15)

To see why, first note that Gug is ¢ X ¢ whereas Geg is
(¢ = @1) x (¢ — 1), thus we must extract the lower right
portion of Gy (corresponding to the unknown signals) in
order to compare. If P12 = 0,
Pl o

5 pul (16)
so that we need only compare the lower right ¢ — ¢; x ¢ —
q1 block of (A¥A)™! to (AFfQ2QEAs)™? (see (11) and
(12)). Writing

- |

AfA, A{”Az]
AfA, AZA,
(17)

AFA =[A; A,]7[A, A2]=[

we have from [12, pg. 23], that

H,a1-1 _ [Bu B
[a¥a] ™ = [p% B2 (18)
where Ba; is given by
B = (AF [1- A (AFA)IAF] Ar)7 (19)

The term in the brackets, I- A;(A¥A;)"?AF  is a projec-
tion operator whose span is the orthogonal complement of
A, which is exactly how QczQEx is defined (see [5]). So,
By = (AchEQgEAg)—l (see (12)). This proves that,
for large N, the variance of constrained MUSIC is the same
as that of MUSIC if the unknown signals are uncorrelated
with the known signals.

A Comparison of UE and CE-MUSIC for a Two
Signal Scenario. In this case, A =[a; a;] where a, is
a known signal and a; is an unknown signal. Also,

P= [pu pn] (20)
pl2 pal’

We assume that aa; = m, the number of sensors. If we
estimate the unknown signal direction using UE-MUSIC
and define v = afla;, we have

GUE(Z,Q) = S - S 3 (21)
P11p22 — |P12|

o? (P?lm + pu1 (P12‘Y' +PI27) + |p12|2 m)
(p11p2z — |I’1252)2 (m? = |1%)

and using CE-MUSIC with the unknown signal,

+

1 a*m

Geg=— + —F—~. (22)
P22 pi, (m2 — |4l )

To see the effect of the inter-signal correlation, consider
p12. It is related to the intersignal coherence or correlation
coeflicient, c:

le] = M and ¢ ="Lc=Lpi (23)

v/ P11P22

where ¢ is the coherence phase. Now consider the following
term from the second term in the numerator of (21):

(P127" + p127) = 2Re(p127") = 2 |p12| (YR COS 6 + 71 sin(¢))-

24
where yr, 71 represent the real and imaginary parts of «.
The denominator in (21) does not depend on the coherence
phase, thus we can look for minima and maxima of the
variance with respect to the coherence phase by looking at
the derivative of the numerator only:

ovaryg

¢

=0 = —7Yrsing +yrcos¢ =0 (25)
or
tang = L (26)
TR
so that ¢ = Zy or ¢ = Ly + . It is straightforward to
verify via a second derivative that ¢ = /v corresponds to
a maximum and ¢ = Zv + 7 corresponds to a minimum.
For a fixed magnitude, this coherence phase yields the min-
imum/maximum variance for unconstrained MUSIC. We
can use the above result to search for cases where the pre-
dicted variance of unconstrained MUSIC is actually lower
than that of constrained MUSIC. In many of the cases we
have considered, the minimum variance for unconstrained
MUSIC was achieved using a nonzero coherence magnitude.
In figure 3, we plot the predicted variance for both un-
constrained and constrained MUSIC over different coher-
ence phases, coherence magnitudes, and different SNR’s.
The conditions are identical to those in figure 2 except that
the SNR and coherence phase are allowed to vary. At each
SNR, a family of curves are drawn where each curve corre-
sponds to a different coherence phase. For each plot, a min-
imum in the variance of unconstrained MUSIC is achieved
for a negative coherence magnitude at the coherence phase
Zv. Figure 3 seems to indicate that there are some co-
herence values at which the variance of MUSIC is less than
that of constrained MUSIC. To study this issue, we ran sim-
ulations comparing UE-MUSIC to CE-MUSIC over a range
of SNR’s. At each SNR, we used the coherence phase and
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magnitude which minimized the theoretical variance of UE-
MUSIC (obtained from the plots in figure 3) and compared
the variance of UE-MUSIC with this best case coherence
to that of CE-MUSIC. The potential advantage of MUSIC
over constrained MUSIC occurs only at low SNR, and by
the time SNR is low enough for the potential advantage
to be visible, MUSIC has broken down and the asymptotic
variance expressions are irrelevant. See figure 4.
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Figure 3: DOA variance. For 4 different SNR’s, we have
plotted predicted variance for a range of coherence phases.
The most interesting coherence phase corresponds to Lvy;
this phase corresponds to the lowest variance (unconstrained
MUSIC) curve for negative coherence magnitudes and the
highest variance for the positive coherence magnitudes. At
each SNR, the constant line towards the bottom of the plot
represents the predicted variance of constrained MUSIC,
which is independent of the coherence magnitude.
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Figure 4: Variance is plotted in dB as a function of SNR.
At each point, the best case (negative) coherence magnitude
was chosen for unconstrained MUSIC (from figure 3).

4. CONCLUSIONS

To compare constrained MUSIC methods to unconstrained
methods, we first analyzed the effect of constraints on sub-
space distance, demonstrating (with analysis and simula-
tions) that constraints always reduce the distance between

the estimated and actual subspaces. We were able to prove
that constraints always reduce variance under high coher-
ence magnitude, large m, or high SNR conditions. We also
showed that cases where unconstrained MUSIC is predicted
to outperform constrained MUSIC generally correspond to
breakdown conditions for MUSIC. As part of this analysis,
we also obtained results related to the effect of coherence
on the performance of MUSIC. We derived best and worst
case coherence phases, in terms of minimizing/maximizing
the variance of unconstrained MUSIC. We have also shown
that there are occasions where the variance of unconstrained
MUSIC decreases as the signals get more correlated — a
somewhat unexpected fact.
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