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ABSTRACT

Many MUSIC-like DOA estimators, such as Min-Norm,
Beamspace MUSIC, Likelihood MUSIC, FINE and FINES, have
been proposed to improve the performance of MUSIC. Since in
the difficult estimation situations the large-sample bias of
MUSIC may become the dominant estimation error, a
comparative study of biases of MUSIC-like estimators in these
cases is necessary for their performance evaluation. This paper
first identifies the dominant part of the bias of MUSIC for two
closely-spaced sources. Then the paper presents a theoretical
analysis of a hierarchy of the performances of these MUSIC-like
estimators based on their abilities at réducing this major part of
the bias and maintaining the asymptotic variance of MUSIC.
The theoretical results in the paper explain analytically many
previous observations resulting from simulations and numerical
computations and may be useful for developing new MUSIC-like
algorithms with reduced resolution threshold over that of
MUSIC.

L Introduction

A number of one-dimensional search signal-subspace
algorithms such as MUSIC {1}, Min-Norm [2], Weighted
MUSIC [3], Beamspace MUSIC[4], LMUS (Likelihood MUSIC)
[5], Weighted-Norm MUSIC (6], FINE and FINES [7], D
estimator [6][8], have been suggested for the estimation of the
directions of arrival (DOA). These estimators form a family,
which, for convenience, we will call the MUSIC family in this
paper.

In the class of one dimensional search DOA estimators, MUSIC
is a large-sample solution to the maximum likelihood estimation
problem [9]. Thus, it has been shown that all members of the
MUSIC family cannot provide a lower asymptotic variance than
MUSIC. But many authors have observed that the resolution
threshold of MUSIC is bias-driven and some of estimators in the
MUSIC family may present smaller biases than MUSIC.
Therefore, a comparative study of biases in the MUSIC family is
carried out for some members by numerical evaluations of these
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necessary for their performance evaluation. Unfortunately,
general expressions for the biases of these estimators are very
complicated. So, the comparisons of bias performance have been
expressions or simulations [10],{11].

This paper presents theoretical comparisons of biases in the
MUSIC family. These comparisons not only explain analyticaily
many previous observations resulting from simulations, but also
provide some further theoretical results.

II. The Main Part of the Bias of MUSIC
A standard white Gaussian model for a narrowband array with
L sensors and d incoherent sources is used in the paper :
x(¢)= As(t)+n(), 1
where A =[a(8{),a(0{),---,a8")] is the steering marrix,
e§°’,e‘2°),- . -,6&0) are d true directions and Rank(A)=d. Suppose
€xl 'ex,Z""'ex,L'l’x,l S>> A'x,d > A'z,d+l == }"x,L = 0'31 )
is the eigenstructure of R =E[x()xT()}=AR A+021. Let the
sample covariance matrix for N snapshots be R . Hereafter, the
random variables, vectors , matrices and functionals obtained
from R will be considered estimates and represented by "N’ over
the corresponding scalars, vectors, matrices and functionals. The
MUSIC estimator is defined as
8 = minimizer v¥ (O)I,,, - E,EXIvO), (3)
where v(0) is the normalized steering vector and
E,=[€,5,8;4] is the estimator of E =[e,;, €. ].
spanfe,,--.e, 4] is called the signal subspace of x(t).
From the expressions of the mean square error and bias of the
MUSIC estimator [12],[13], it follows that
1 4 Ay jcﬁ 1H
NB, =10y -0

2 1
V(@) +o(—),(4)
N

E®® —o®)2 = ;

EG® -0 =L -a-1p® + Lp® 1oLy, (5
N N N
where
d L\, ;6>
P = 1§ _2%i% o pete v@)WvH (0)e, ;1.
p 2.2 " xJ
Dy j=1(A;j—0p) (6)
@__ D & A2,0n le# 2
BY =-—5 2 2ch-fv(e)| i
6D; j=1(A, ; —Cp)
and
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D, =2¢" @ON1-EEH 1w(e®),
Dy =6Re[#? @)1-E,EX 10(6)}. Q)
It is well known that in the difficult estimation situations , e.g.
large dynamic range, high correlation between sources and very
closely-spaced sources, the finite-sample bias of the conventional
MUSIC may become the dominant estimation error. Therefore,
we focus on the comparisons of bias performances of MUSIC
family in the case of two closely-spaced sources.
LetA= |0(°) O(O)I Assuming

L - 2
[## ©{)e§?| 0 and z|¢” ©™ed 20, ®

from [14] we can prove that for i=1,2,
Dy ”(e‘°’>ez| o). |"<e‘°’>ez| 0\m. O

i ”(e‘°’.)ed| =0, (10)
k—d-i-l
where O,(1) is bounded as A—0. Based on (9) and (10), we

claim that for two closely-spaced sources in (5) 1’1(2) = 0(A'4)
and Pz(z) = O(A'3 ). That is, in this case the main part of the bias
of MUSIC is
) 1
B A—(L-3)RP =
N
(11)

(L-3)2 Ay 02

. 2Refe? v(O)v (), ;
ND, (A, ; -02) 5/ YO O]

where 52 is given in (7).

III. Reduction of the Bias of MUSIC by Beamspace
MUSIC

Assume y(t)=B"x(t), where B is an LxL' beamforming matrix,
d<L'sL and BHB=I, ;. Let R, be the covariance matrix of y(t)
and the R be €y1:€y2, €y 1.
Applying MUSIC algorithm to y(t), we obtain the Beamspace
MUSIC estimator of the directions 6{,0{,...,6(" :

8®) = minimizer (v @) My —E,E¥ v (8), 12)

where

eigenvectors of

B#v(0)

Jv“ (0)BB¥ v(0)

v(0)= (13)

and B' = [8y,1.:+,8y4]- Itis easily seen that if

BBHA=A, (14)
then

1 & ;"x.jclzl

. 1
E@® —o©®)2 = = 2]"‘!"(6)[ +o(-;) (15)

ND, j=1 (A, ; ~67)
and
EG® —6@)= Lz -a-P® + Lp® 1 oly, (6)
N N N

where

2

d A, O
PO o1 § T "2 —2Refef @)V (©)e ]
Dy =1 (s =03) an
b ﬁb d K,}c,,
PZ( = =7 2 2{ ‘Jv(9)|
6Db j=1 (lxj _cn)
In (17),
B, =20 @) 1-E,Ef 136,
By = 6Refii? @)1~ E,E¥ 1ae®);, (18)
where
BB v(0)
19

u(0) = —————.
JvH(©)BBH v(9)
In this paper, we always assume that the beamforming matrix
satisfies (14).
In this section, we show analytically that under some mild
conditions the bias of Beamspace MUSIC will be less than that
of conventional MUSIC.

Theorem 1 Suppose BBZ[A,v(0{”))=(A,v(6{”)].If

P@ PP 50 or IP(Z) | ——IP(2)| : (20
d-1
then regardless of the terms of o(N" 1), it holds that
IE(ég”) - e§°>)| < |E(é§2’ ~o{® )|. 1)

Furthermore, for two closely-spaced sources we have

Theorem 2 If BBHA=A and L'=3, then

E(é(b) _ 9(0)) B
E(é(z)—e(o)) =0(A)+&ey, 22)

where £,—0 as N—oyoo,

Ihmm},IfBBH {A, D]=[A, D], where
D= [—a(e<°’ Y— a(e<°’ )], then

|E(e“’> o) -3
|E(é(2) — 9 )I L-3
where £y—0 as N—oo.

+O0(A)+ey, 23)

Obvious, if BBH [A, D]=[A, D] then
EG® -0©@)2 = EG® — 62 4 o(-) . (24)
N

Therefore, if we choose B such that L'=3 and BB [A,V(Bfo))]
=[A,%(8{)], then BBH#(0{”) = v(85”) for the two closely-
spaced sources. This means that (24) approximately holds for
both 8{%) and 6. This B should be the best choice for both of
reducing the bias and maintaining the asymptotic variance of
MUSIC. Simulations demonstrate this conclusion is correct.

In short, Beamspace MUSIC is an approach to reduce the bias of
MUSIC and the limitation of this reduction for two closely-
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spaced sources is the removal of the main part of the bias of
MUSIC, %(L -d-1)PP .

IV. Elimination of the Main Part of the Bias of MUSIC
by Likelihood MUSIC

The Weighted-Norm MUSIC estimator is defined as
8™ = minimizer W(q)D; (¢), where W(6) is the estimate of the
positive weighting function W(8) and 52(9) is the estimated
null-spectrum of MUSIC.. The relations between the large-
sample biases and mea:i-squaxe errors of Weighted-Norm
MUSIC and MUSIC , which have been derived in [15], are as
follows.

E®™ -0y = E@P -9®)? + o(%). (25)
and
EO™ _g® _ g5 _ e(o)
A% 1 gon | v o
N Wy Dy =t

(26)

Likelihood MUSIC (LMUS) algorithm was first proposed by
Sharman and Darrani [5] based on minimization of a log-
likelihood function. LMUS is a specific weighted-norm MUSIC
with a weighting function

We(0)=— @n
| Ho )ekl

2 __.__
£=1 (l,, o2 )2
Denote the LMUS estimator by ). Then, we claim that

Theorem 4. EG® ~8®)? = EG® )2 + o) and
N
E@® -0@)=Lp® 4 oLy, (28)
N N
This means that the main part of the bias of MUSIC can be

removed by LMUS. Using the results in the previous section,
for two closely-spaced sources we have

Theorem §. If B satisfies BBY[A,v(0{")]=[A,¥(6{*)], and
L'=3, then E®(" —0(0)2 = EG® - 0{")2 + 0(7:,_) and

EGP -0) = EG® - 60) + o(-1). (29)
N
This assertion is from large-sample theory. For finite sample

cases, we only can claim that the best performance of Beamspace
MUSIC should be close to LMUS.

V. Biases of Min-Norm, Weighted MUSIC, FINE and
FINES
According to the definitions of Min-Norm [2], FINE and
FINES [7], they can be regarded as the specific members of the
following subclass of weighted MUSIC estimators based on the
cost functional
F@)=v" O)E,E; YW(E,E; )v(®), (30)
where E, =[e 4,1.e5 ), E,E¥ =1, ~EE¥ and W is
an (L-d)x(L-d) projection matrix . That is W=WH and W2=W,
span{e, ;.1,---.€, ] is called the noise subspace of x(t). (30) is
equivalent to
F©®)=v? OFE ,E7 v@), 31)
where E', E',’,’ is a projection on to some subspace of the noise
subspace. Define B=[E_E ] which is an IxL' matrix and
satisfies BBHA=A. L' is equal to the sum of the number of
sources and the number of columns of E_'. Obviously, d<L'<L.
Thus, (31) is equivalent to
F(8)=(v¥ (0)BBHv(0)u” (6X1 ., - E,EZ )u(6) -
=WEOX(¥ @) Upxr -EEJ V(O
where W(0)= vl (O)BBH v(0). This means that (30) is
equivalent to a weighted norm Beamspace MUSIC with
weighting function W(8) = v¥ (0)BB¥ v(6). Furthermore, since
We (0(0))=0, applying (26) to the Weighted Norm Beamspace
MUSIC, we assert that the bias and mean square error of the
estimators generated from the sample form of (30) and
(v O (Ipyp -E,EH)v(©)] in (32) are the same. That is,
FINE, FINES, Min-Norm and the subclass of the weighted
MUSIC with the cost functional defined by (30) are specific
members of Beamspace MUSIC. Particularly, all of them satisfy
BBHA=A. Therefore, Theorems 1, 2 and 3 can also be used for
the comparison of biases of FINE, FINES and Min-Norm with
the conventional MUSIC. Thus, we claim that for two closely-
spaced sources Min-norm and Fine can be used to remove the
main part of the bias of MUSIC. Since for these two algorithms,
the corresponding beamformer matrix B does not satisfy
BBY [A,V(Bgo))]=[A.\'r(9§°))], their large-sample mean square
errors are larger than MUSIC. For FINES, d+1<L'<L. Thus, in
this case its bias is less than MUSIC but greater than FINE.

VI. Simulations and Conclusion

Some simulation examples are also presented in the paper to
substantiate the theoretical analyses. For example, Fig. 1 and Fig
2 show the biases and RMS' (Root of Mean Square Error) versus
A of MUSIC, LMUS , Min-Norm and Beamspace MUSIC with
L'=3, d=2 and BBF[A,%(0{")]=[A,%(0{")] a 6 =14°,
where N=1000 and the signal-to-noise ratio (SNR) just reaches
the 100% resolution threshold. Fig. 3 presents the resolution
probabilities of MUSIC, LMUS , Min-Norm and this Beamspace
MUSIC in an array with L=10, N=64, and two equipowered and
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uncorrelated sources at e§°) =14° and 9(20) =16°. SNR varies

from 4 dB to 24 dB. all the statistics in these figures are based
on 200 independent trials. It is clearly seen that the performance
of the best Beamspace MUSIC is close to that of LMUS.
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Fig. 1. Comparison of Biases
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Fig. 3. Comparison of Resolution Probabilities

To summarize, this paper has presented a study of a hierarchy
of biases of the MUSIC family such that one can properly
evaluate their performance from large-sample biases. This study

may also be useful for developing new one-dimensional search
methods with reduced resolution threshold over that of MUSIC.
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