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ABSTRACT

In this paper we report results of a research in which we
studied the problem of determining the threshold signal to
- noise ratio (SN R) between large and small errors estima-
tion of the direction of arrival (DOA) of a radiating, far-
field source in the presence of another. Using the Barankin
lower bound (BB) we examine the conditions under which
achievable mean square error {mse) performance of any
unbiased DOA estimator deviates substantially from the
Carmer-Rao lower bound (CRB). We present expressions
for the threshold SN R as a function of the source-array ge-
ometry and the sources SN R where one and two sources, of
known/unknown spectral parameters and DOAs, are present.

1. INTRODUCTION

Passive localization of sources is an active field of research
in the last 20 years. Many different algorithms have been
proposed for estimating the direction of arrival (DOA) of
the sources. Their performance is usually compared to the
Cramer-Rao lower bound (CRB), which bounds the vari-
ance of any unbiased estimator of the DOAs. This bound
has also been studied to gain insight on the inherent lim-
itations of this important estimation problem. The use of
the CRB is usually justified by appealing to an asymp-
totic theorem which asserts that this bound can be closely
approached by “sufficiently large” SNR and/or observa-
tion time. Unfortunately, in many practical problems as-
suming asymptotic conditions is unreasonable. Practically,
the attainable mse of any unbiased estimate of the DOA
deviates radically from the CRB as SN R reduces beyond
a critical value, exhibiting a threshold phenomenon. The
fast performance degradation below the threshold makes
the value of the threshold SN R a critical parameter in sys-
tem design. Thus, improved bounds are used to predict
the threshold SN R value and to analyze reachable DOA
estimation performance below threshold in the ambiguity-
dominated regime, where some mistaken models can not be
distinguished from the true one.

Improved lower bounds on the mse of location-related
parameter estimation of a single source for establishing the
threshold SN R have been studied in several works (e.g. {1]-
{4]). However, with more than one source, only the active
case were studied. Ambiguity phenomenon and other “res-
olution thresholds” in the passive multi-source case were
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studied by other means (e.g. [5]-[7]). To the best of our
knowledge, our study is the first in which improved non-
Bayesian bounds (i.e., the Barankin Bound) are used to
predict the threshold SN R in a multi-source, passive DOA
estimation. (The active case is studied in [8]). We present
expressions for the threshold SNR of the estimation er-
ror of the DOA of a source in the presence of spatially
uncorrelated noise and in the presence of more sources of
known/unknown DOAs. In particular, we study the ef-
fect of the prior knowledge of nuisance parameters (as the
sources spectra) on the threshold SNR.

2. PROBLEM FORMULATION AND
BACKGROUND

2.1. Problem formulation

We assume an array of M omnidirectional sensors in an arbi-
trary geometry which receives zero-mean, Gaussian, narrow-
band signals radiated from N = 2 far-field point sources’.
The additive noise in each of the sensors is assumed zero-
mean, Gaussian, stationary process, statistically indepen-
dent of the noise at the other sensors.

The signal received at the m-th sensor is described by

N
Zm(t) =Y sn(t = Tm(8n)) +nm(t) for m=1,..., M

n=1

)
where sn{-) is, in the passive case, an unknown signal radi-
ated by the n-th source, 8, is the DOA of the n-th source,
nm(-) is the additive noise at the m-th sensor, and 7 ()
is the propagation delay associated with the n-th source
and the m-th sensor. For far-field sources, it is given by:
Tm(0n) = L(zmsin(6n) + ym cos(dr)) where c is the propa-
gation velocity and (zm, ym) are the Cartezian coordinates
on the m-th sensor. In a matrix form, we may write (1) as:
X, =A;S,+ N, for j=1,...,L (2)

where

X, =[X:(£;), X2 (£i), - Xl F)
S, =[51(£,),S2(f5), - SN (N

1In [9] we present a simple generalization of the results to
more than two uncorrelated sources.
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N, =[N N2 (f)s - N ()T
Aj= [Es, (f])v.’l&,(f.;)- Lo :EeN(fJ)] '

Egn(f) = [6—127!]1'1(9n)’ 6—12"'!"2(9':)’ . ’e—lz"f"M(en)]T

Here Xm(f;), Sn(f;) and N (f;) are the Discrete Fouri-
er coefficients of Tm(t), Sn(t) and n,(t), respectively, at the
frequency f;. Aisthe M x N direction matrix, and the vec-
tors yy(f) are referred to as the steering vectors of the array.
We assume that the observation time is large so the time-
bandwidth product is large. Under this assumption the
Fourier coefficients associated with different frequencies are
uncorrelated and the probability density function (pdf) of
the received data is given by: :

L .
p(X) =[] (X)) (3)

=1

where Lﬁg(_, (T is the total observation time), is an M-

- dimensional, zero-mean, complex Gaussian vector with co-
variance: R; = mlInm + AiRaAf, 1 = 1,..,L. I is the
M-dimensional identity matrix, #; is the spectrum of the
additive noise process at each of the M sensors and Ry
is the N-dimensional cross-spectral matrix of the radiating
sources.

2.2. On the Bararnkin bound

Denoting an unbiased estimate of a p-dimensional unknown
parameter vector, ¢, by ¢, the following matrix inequality
holds [10}:

cov(d) > BB(¢) > BR($,$,.8,,-) 2 CRB(¢) (%)

where cov(-) stands for the covariance matrix, CRB and
BB are the Cramer-Rao matrix and the Barankin matrix,
respectively, and

BR($,8,,9,, ) =
T(8,0,+ 0, - )D(8. 8,8, ) T (8,8,,8,.-)(5)

The matrix T is given by: T = [0,21 -84, -6 ...]; where
[ 1=1,2,..., is a test point in the parameter vector space.

_ T
"D is a symmetrical matrix given by [ i lB ] where 1is a

vector of all ones and B is a matrix given by:

p(X. )2 X.¢)

By = ETX,9) 7X.9)

(6)

The second inequality in (4) holds for any choice of test
points (not less than p, the number of the unknown parame-
ters). The Barankin bound matrix BB is derived for the set
of test points which maximizes the matrix BR(4, 21 ’iz yoer)
In our derivation we restrict ourself to p test points, each
given by: ¢ = (61,02, ., & + Adi, ..., $p). That is, the ma-
trix T is determined by A¢i, ..., A¢p which are chosen to
maximize BR(¢, D¢y, ...y A¢p). The resulted bound is not
necessarily the greatest Barankin-type lower bound (since

by adding more test points BR may be larger), but we ar-
gue that the threshold SN R set by our bound is practically
unchanged when more test points are used.

The multidimensional version of the Barankin bound of
(4)-(6) is applicable for data X of any distribution. For our
problem, where X consists of L M-dimensional zero-mean
complex Gaussian vectors, it can be shown [11] that (6) is
given by:

o L det(R(fhf_))
B, = Edet(R(f.,g,.)det(R(fu2,-))

1 @
det(R=1(f1,6,) + R-(fi. 8 ) - R (1, )

where R(fi, ¢.) is the covariance matrix of the data Fouri-
er coefficients at frequency fi, evaluated with the assumed
parameter vector i P is the true parameter vector. (7)
holds as long as R (fi, )+ R~ (f1,8 )~ R (f,9), i,i =
1,..,p, 1 =1,...,L is a positive definite matrix. Once the
best test points are chosen, physical conditions which cause
det(R7'(fi,8,) + R™'(f,8)) = R7'(fi,9)) = © for any
i, = 1,..,p, | = 1,.., L, characterize a threshold phe-
nomenon. We find the threshold SNR for a single fre-
quency. Based on the observation above, we argue that
the threshold SN R in the multi-frequencies case can not
be higher than the one evaluated for a single frequency.
Moreover, if the signal is narrowband (in the sense that
%E%V;; << 1, where ap is the array aperture, W is the pro-
cessing bandwidth, wo is the center frequency and A is the
corresponding wavelength) then the threshold is practically
unchanged.

The unknown parameters vector in our problem consist-
s unknown DOAs and/or spectral parameters. Following
similar argumentation, the threshold with more than one
source cannot be at lower SNR than the one derived for
a single source. Also, if sources’ spectral parameters are
unknown the threshold can only move to a higher SNR,
relative to the case of known spectral parameters. In [9] we
present formal proofs and specific results for the different
cases we have studied. Here we focuse on specific results
and discuss them.

The mathematical definition of the threshold, as the
SNR for which (6) becomes infinite, need not necessari-
ly characterize the transition from the large errors regime,
where the mse performance is dominated by ambiguity prob-
lems or by interferences, to the small-errors regime where
achievable performance closely approaches the CRB. Ac-
tually, following the detailed study in [9], it appears that
our definition characterizes the above mentioned physical-
ly meaningful threshold SN R in problems involving “mod-
erate” values (of order 1) of the time-bandwidth product
(TBP), where the available data concentrates in a single
Fourier coefficient. As the time bandwidth product be-
comes larger, the Barankin bound decreases faster than the
CRB and the two bounds met in SNR smaller than the
one determined by our definition of the threshold. Yet, the
“best” test points devised by the single frequency analysis
are still appropriate for the case of large TBP and the qual-
itative discussion for the performance characteristic of well
separated and closely spaced sources is still valid.
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3. THRESHOLD SNR IN PASSIVE BEARING
ESTIMATION - RESULTS

3.1. A single source

For N = 1 - a single source in spatially white noise - the
SN R for which det(R™* (fo, 9 )+R™" (fo, 8 )—R™"(fo,$)) =
0, i.e., the threshold SN R for a single tone at frequency fo
is:

1 1+ +/1+8(1 —mBP(8,wo))

S{wo) _
- 2(1 —mBPd,w0)) ()

Tth1 = Tl(wo) = _M

Where mBP(8,ws) is the relative value of the highest side-
lobe of the array beampattern, when is aligned toward the
source at bearing §:

__ maz v+ (8, wo)z(a,we)2
mBP(O,w) == o I= o .
BP(8,o,wo) = I"'(‘9 wolg(e0) 2 i¢ the conventional array

beampatternd and @ is the set of all possible DOAs outside
the mainlobe of the array beampattern. Since the normal-
ized array beampattern, BP, is non—nega.tlve and not larger
than unity, the threshold value exceeds M~ in any given
array geometry and its value is determined by the largest
sidelobe of the array beampattern. For a linear uniform ar-
ray this sidelobe is about -13dB and the threshold SNR is
well approximated by M ~!, while theoretically this thresh-
old SN R is achieved only with an ideal array beampattern
having no sidelobes.
The threshold SNR of (8) is the same if the source
spectral level is known or not [4],[9]. Also, the choice of the
. best test point for 8, at the largest sidelobe of the array
beampatttern, agrees with the ambiguity analysis of this
problem [6)].

3.2. Two sources

The best test-angle associated with the interference-dominated

regime in the case where the bearing of one source is esti-

mated in the presence of another, interfering source ap-

pears to be the bearing of the other source. Likewise, the

Kullback-Leibler distance [6] between the true and the mis-

taken models tends to get a local minimum around this test

angle. This choice of this test angle yields the threshold
SNR for the first source (at bearing 6;): -

rons = ——{ 1
2 = %M 1~ BP(6;, 82, wo)

n [ 1 2 8+ 12Mr;
l—BP(Gl,Og,wo) l-—BP(gl,g;,u.Jo)

+2Mr; (9)

+4M213))

where 2 = 51(,739-)- is the SNR of the other source (inter-
ference) and ; is its bearing. The threshold SN R depends
on the relative separation of the sources via the normalized
array beampattern (the larger the value of BP at the inter-
ference direction is, the larger is the threshold SN R) and
on the SNR of the interfering source. From (9) we have
that rep2 2 37 + 12 with equality if the interfering source
lays in a null of the array beampattern, when aligned to-
wards the source. However, when the two sources are well

separated (not an ‘high resolution’ scenario) and the array
geometry is reasonable, 7:7 + 72 is a good approximation for
the threshold SN R. Note also that the threshold value is
symmetric with respect to the two sources.

The threshold SNR of (9) is observed only when the
interference is “sufficiently strong”, so reaz > rin1. Other-
wise, rn; is the observable threshold. If rip2 > renn then
for r¢p2 > r > rep1 an interference dominated regime makes
the mse performance of the bearing estimate of §; exceeds
the CRB by large factors.

In high resolution scenario the choice of a test point for
0, at 8, yields a CRB-type test point. Thus, the thresh-
old tends to degenerate, except for very strong interference.
That is, our analysis above is still valid, but since the CRB
at high resolution is very high, the difference between ‘s-
mall’ and ‘large’ estimation errors is no longer significant,
so the threshold effect is unclear. Adding more test points
to the Barankin bound may make it clearer, but not signif-
icantly.

Also for the case of two sources we show [9] that the
availability of prior knowledge of the interference bearing
and/or of the sources spectra affect the threshold SN R in-
significantly, at least in the single frequency analysis.

3.3. Numerical examples

The results of the numerical examples are depicted in Figs.
la and 1b. The array used in the example is a 6-elements
equally spaced linear array. The distance between adjacent
sensors is A/2. The scenario assumed a radiating source at
the broadside of the array of known spectral level. Its DOA
is estimated in the presence of an interference. We assume
that the interference is either well-separated from the source
(separation of 40°, or closely-spaced (separation of 3°). Al-
I parameters of the interference (DOA and spectral level)
are assumed known. For each of the two cases we plot the
Barankin bound (solid line) and the CRB (dashed line) as
a function of the source SN R for the case where the inter-
ference is strong (interference to noise ration - IN R=5db)
and weak (IN R=0db). The lowest solid line in both fig-
ures is the Barankin bound for a single source - where no
interference is present.

When the sources are well separated (Fig. 1a), the CRB
associated with weak or strong interference are practically
equal. The threshold SN R, in which the BB and the CRB
coincides is clear. This point is exactly the one predicted
by (8) for a single source and by (9) for the two sources
scenario. The threshold SN R increases with the interfer-
ence SN R r3, as predicted by the theory. In Fig. 1b, where
the sources are spatially close, the threshold phenomenon is
unclear. Mathematically, the Barankin bound still exceeds
the CRB in very large SN R values though its improvement
is insignificant.
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Fig. la: The Barankin bounds (solid lines) and the
CRBs (dash/dot) on the bearing estimation of a far-field
narrowband source in the presence of a well-separated in-
terference.
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Fig. 1b: The Barankin bounds (solid Lines) and the
CRBs (dash/dot) on the bearing estimation of a far-field
narrowband source in the presence of a closely-spaced in-
terference. .

1648



