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ABSTRACT

A novel rigorous approach to the spectral density estima-
tion problem based on the trigonometric moment problem
technique is considered. Using the trigonometric moment
problem results, all possible extrapolations of the autocorre-
lation function, which are in agreement with a set of known
values are found. A wide set of spectral estimators is de-
scribed in terms of polynomials orthogonal with respect to
the given autocorrelation sequence. The parametric rep-
resentation for this set is given. The performance of the
proposed spectral estimator with arbitrary parametrization
function is established.

1. INTRODUCTION

At present, there are several standard methods of dealing
with the classical problem in digital signal and sensor array
processing. [1, 2, 3]. These methods include the conven-
tional nonparametric Fourier approach and more recently
developed parametric techniques such as maximum entropy
(ME), maximum likelihood (ML), MUSIC, ESPRIT and
others.

Until 1967, most of the procedures used for estimating
the spectral density of a stochastic process were based on
the Blackman-Tukey approach [1]. The expectation of an
estimate is equivalent to the convolution of the true spec-
tral density of the stochastic process with the spectral win-
dow. The statistical stability and resolution of the spec-
tral density estimate using the Blackman-Tukey procedure
are highly dependent on the choice of the window func-
tion [4]. Moreover, the spectral density estimator based on
Blackman-Tukey approach is linear because it involves the
use of linear operations on the available time series. A ma-
jor problem with the Fourier transform is that the accuracy
of the mode estimates is roughly inversely proportional to
the total simulation time interval. Moreover, there is prob-
lem with appropriate choice of the windowing function.

The windowing problem may be overcome by using the
nonlinear estimators of spectral density based on ME ap-
proach, ML approach or others. But these approaches are
not universal. Really, these approaches do not permit one
to get other spectral estimations which corresponds to time
series, whose autocorrelation functions agree with the same
set of known values, i.e. to get other extrapolations of the
correlation function.

Besides, when the spectral estimate with good resolution
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is necessary to solve a more concrete problem, for example,.
the power spectral density estimation problem with addi-
tional a prior: information about the spectrum, it seems
unreasonable to apply the known methods of spectral esti-
mation, such as ME method, ML method or others in their
original form, because these methods of spectral estimation
are not intended to solve concrete problems [5].

So, in spite of the progress in spectral estimation and a
list of successful practical application of the more popular
methods of spectral estimation such us ME, MUSIC, ML
and some others, new methods for effective spectral estima-
tion are necessary. Besides, it is desired to have a common
approach both for the construction of spectral estimation
methods and for the investigation of their performance.

The aim of this paper is to propose and develop a novel
rigorous approach to spectral density estimation problem.
We describe all possible extrapolations of the autocorrela-
tion function which agree with a set of known values. The
set of possible spectral estimations is described as a para-
metric family of spectral estimators with parametrization
function. The quantitative performance of the proposed
spectral estimator’s family is established.

2. SPECTRAL DENSITY ESTIMATION
PROBLEM

2.1. Problem formulation

Consider the problem of estimating a power spectral den-
sity function given only that it is positive on the spectral
support, zero outside-and compatible with the known values
of the autocorrelation sequence.

The aim of spectral estimation is to find an estimate of
the spectrum which agrees with the set of the known val-
ues of autocorrelation sequence cx, k = 1, 2,..., N, i.e,
spectral density estimation problem is to determine the non-
negative function P(f) such that

P(#)>0, for 6¢€[-m,n], (1)
and

%/P(o)e-“‘"da —ck, k=0,1,..., N (2

hatis

Note that the considered problem (1)-(2) may be unsolvable
for an arbitrary sequence of the values cy if we strictly follow
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conditions (2). To become solvable, this problem has to be
regularized.

There are two ways to attach a meaning to the prob-
lem (1)-(2). The first way is to replace conditions (2) by
approximate relations. In this case the problem arises of
choosing a good approximate relation. Another way to at-
tach a meaning to the problem {1)-(2) is to relax the con-
dition (1) and replace it by P(8) > —pu, for § € [—x, 7],
where p is a positive value. Then, the shifted spectral esti-
mation P,(f) = P(8) + 4 will be nonnegative and problem
transforms to problem (1)-(2) with modified autocorrela-
tion sequence cx + ubko, k=0, 1,..., N, where 0 is the
Kroneker symbol.

It is relevant to remark that the problem for shifted
function P,(6) is not solvable for arbitrary positive value
u. However, we can always make the problem solvable by
choosing a sufficiently large value p.

The appearing item wéxo can be explained in a different
way. First of all, the measurement data really may have
a white noise with dispersion characteristic x. Besides, by
having added a component pbxo to regular autocorrelation
coefficients cx we imply an obvious method to impart reg-
ularity to the comsidered problem. In this way the value
u is a regularization parameter. Obviously, the regularized
problem is equivalent to initial spectral density estimation
problem {1)-(2) for new antocorrelation sequence cx 4 péxo,
k=0, 1,..., N. Therefore, below we consider the spectral
density estimation problem (1)—(2) with the regularization
parameter u, whenever the initial spectral density estima-
tion problem (1)-(2) for sequence cx, k =0, 1,..., N is
unsolvable.

2.2. Extrapolation of autocorrelation sequence

Let us now assume, that a solution of the spectral density
estimation problem (1)-(2) is known. Then we may calcu-
late the unknown terms of the autocorrelation sequence, 1.e,
ck for all £ > N and so to extrapolate the antocorrelation
sequence. The inverse is also true, i.e., if we have found an
extrapolated autocorrelation sequence éx, k =0, 1,... such
that its N + 1 first terms are equal to the known values of
the autocorrelation sequence, i.e., the values

Sk = ck, for ¥k=0,1,..., N,

then the spectral estimate can be defined by means of the
inverse Fourier transform

o0

Poy= > &e™, (3)

k=—o0

where é_j = & for all integers k.

Let us note, that the extrapolated autocorrelation se-
quence & can be chosen arbitrary provided that the func-
tion P(8) is nonnegative. The last condition gives us a
restriction for the possible extrapolations of the autocor-

relation sequence cx, kK =0, 1,..., N. Namely the auto-
correlation sequence cx, £k =0, 1,..., N and the extrap-
olated autocorrelation sequences éx k = 0, 1, 2,... have

to be positive-definite {6, 7). The set of all spectral esti-
mations written in form (3) with an arbitrary positive def-
inite extrapolated sequence éx, k = 0, 1, 2,... forms the

1642

Carateodory class of function [8]. The Catateodory class is
closely associated with the trigonometric moment problem
[6], which plays an important part for the description of all
solutions of the spectral density estimation problem.

2.3. The trigonometric moment problem

The trigonometric moment problem consists of a collection
of complex numbers

L[ p(o)et*® g,

T
-—T

E=0,1,..., N, (4)

Ck

where P(8) is an unknown positive function of §. Assuming

that the moments ck, k=0, 1,..., N of P(8) are exactly
known, the problem is to determine the function P(6). Let
us note, not any set of numbers ¢x, k=0, 1,..., N can be

the moments of nonnegative function, i.e., the trigonometric
moment problem for an arbitrary sequence of moments cg,
k=0, 1,..., N can be unsolvable. We will assume that
the Toeplitz determinants A, = det ||¢cn—|| are nonzero for
all integern =01, ..., N

Then there exists the system {Pn(z)} of polynomials of
the first type and the system {P,(z)} of polynomials of
the second type orthogonal with respect to the unknown
measure P(#), which correspond to given moment sequence
{ck}t.o [6]. The monic polynomials {Pn(z)} satisfy the
recurrence relations for the orthogonal sets of polynomials:

Pat1(2) = 2Pa(2) + basa PA(2), (5)

where R*(z) def z*R(1/2) for any polynomial R(z) of de-
gree k; by are some constants for which formal analytic
relations in determinant form can be obtained. ;

The following criterion of solvability of the moment prob-
lem (4) holds [9]:

Theorem 1 The trigonometric moment problem (4) is
solvable if and only if the inequalities

lax| <1, k=0,1,..., N,
hold, where {ak}kN=o are the coefficients of the recurrence re-

lation of polynomials orthogonal with respect to the moment
sequences {cx}i—o-

To attach this theorem a constructive mean, a recurrence al-
gorithms, for example, a Levinson algorithm has to be used
to calculate the coefficients ax of the recurrence relation for
orthogonal polynomials [9].

Let us now assume that the necessary conditions of solv-
ability of the trigonometric moment problem are true. Then
all functions P(#), for which the relation (4) is fulfilled for
allk =0, 1,..., N, can be described by means of the linear-
fractional transformation [6].

Theorem 2 Let Py(z) and Qn(z) be the monic polynomi-
als of first and second type orthogonal with respect to given
moment sequence {cx}r=o- Let the moment problem (4) be
indeterminate. Then all solutions of the moment problem’



(4) can be described by means of the linear-fractional trans-
formation

_ Lo | ezQN(z)e(z) + Qxn(2) 2 0
P.(z)= e R 2 Pu(2)e(z) = P(2) " (6)

of the function e(z) € B, where B is a class of func-
tions holomorphic in © and bounded there in modulus by
1; Pi(z) = 2" Pa(1/2), Qu(2) = 2"Qa(1/2), ha = 22,

Due to Theorem 2 any solution P({f) of the moment
problem can be expressed by means of the linear-fractional
transformation (6) with the holomorphic function &(2) cor-
responding to this solution.

Using the properties of the orthogonal polynomials [6] it
is easy to transform (6) to form

1 ()P e
- e T 0

3. SPECTRAL ESTIMATOR’S FAMILY

In this section we consider the spectral estimation problem
as a trigonometric moment problem.

As it follows from the previous section any solution of
the spectral estimation problem (1)—(2) for the regularized
sequence cx + pbko, K = 0, 1,..., N can be represented
in form (7) where &(z) is a parametrization function corre-
sponding to this spectral estimate, Py(z) is the polynomial
with the coefficients satisfying to the Yule-Walker system
and P}{z) is a polynomial conjugate to Pn(z).

Using representation (7) and an effective algorithm for
calculation of the orthogonal polynomial Px(z) and its con-
jugate by the given autocorrelation values one may obtain
different spectral estimations. Obviously, the form and per-
formance of a concrete spectral estimator depend on the
choice of the parametrization function £(z). Using an ap-
propriate parametrization function, the known spectral es-
timation can be obtained. For example, in the special case
where (2) = 0 relation (7) is simplified and passed to
Burg’s maximum entropy spectral estimation

P.(z)=

Pui(8) = |Pn(e®) %,

where Pn(z) is the polynomial with the coefficients satisfy-
ing to Yule-Walker system.

Another example is the maximum entropy solution of
spectral density estimation problem with a priori infor-
mation about spectrum [5, 10], where the aim of spectral
estimation is to find the function which agrees with the
set of the known values of autocorrelation function and
given @ priori information. In view of the given a priori
information, the original spectral estimation problem re-
duces to spectral estimation problem with gaps in spectrum
[10]. The spectral estimation with desired properties, can
be found using relation (7). However, to find the solution
of this spectral estimation problem, we have to choose the
parametrization function &(z).

The algorithm choosing the parametrization function £(z)
to construct the maximum entropy solution of the spec-
tral estimation problem with @ priori information about
the spectrum can be found in [5, 10].

Let us now explain the way of choosing of the
parametrization function &(z) to get the linear spectral es-
timator.

Obviously, any linear spectral estimate can be repre-.
sented as a weight Fourier transform from the known cor-
relation coefficients cx

N
P(z) =2Re Z prexzt, z=¢' (8)

k=0

where pi is the weight coefficients, which are determined
by the chosen windowing function. In the particular :case
pr =0 forall k=0, 1, ..., N the relation (8) transforms
to ordinary Fourier spectral estimate.

From relations (6) and (8) we have

_ Aan(2) _ i
e(z) = _——ngN(z)’ z=¢€", (9)
where
B N
Aan(z) = - Pi(2) Y cnons” + Qiv(2)
k=0
and

N
hn k
Ban(z) = Z)—PN(Z)chpkz ~ Qn(z)
k=0
are polynomials of power 2N. The coefficients of this poly-
nomials can be easily expressed through the initial correla-
tion coefficients cx and the given weights pk.

From relation (9) it follows that the parametrization func-
tion € is determined by the autocorrelation coefficients cx
and windowing function in unique way. Using varies win-
dowing functions one can get any known linear spectral es-
timate. Thus, relations (7) and (9) give us a description
of a class of linear spectral estimates by means of linear
fractional representation.

4. PERFORMANCE OF SPECTRAL
ESTIMATOR WITH ARBITRARY
PARAMETRIZATION FUNCTION

In this section we study the properties of the spectral esti-
mator in form (7) with an arbitrary parametrization func-
tion &(z).

As it follows from relation (7) the spectral estimation
P.(6) with an arbitrary function e(z) from the class B is
nonnegative for all § € [—=, 7]. Moreover, due to theorem 2
the function P.(8) defined by (7) satisfies the relation (1),
i.e., the relation (1) is fulfilled for arbitrary parametrization
function &(z) bounded in modulus by 1.

Having investigated the performances of Burg’s method,
many researchers discovered that the spectral resolution of
Burg’s algorithm is indeed higher than that of the classical.
methods based on the discrete Fourier transform.

Let us consider performances of the spectral estimator
(7) with an arbitrary function e(z).

To take into consideration quantitative characteristic for
the proposed method we consider the model example of one
spectral line with coordinate 8y and power p in white noise
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with dispersion characteristic € and study the behavior of
the spectral estimation P.(f) in a neighbourhood of the
point § = —fo.

Let & = pe™t*%0 4 ebio be a given model autocorrelation
sequence. Using the Levinson algorithm [11] to solve the
Yule-Walker system the polynomial Py(z) and its conjugate

are found
—iN(0+60) _
¢ 1) (10)

9y _ _iN® 1
Pr(e™) =e <1+N(1+a) e (e+80) 1

iN(8+60) _
1__e 1), (1)

» 16
Py(e"”) = (1 + N(1+a) e-0+8) — 1
where a = ¢/Np.

Substituting the expression for Py(z) and for Py (z) into
(7) and making some transformations, we find the expres-
sion for spectral estimate with arbitrary parametrization
function in a neighbourhood of the point 8 = —#,

P.(8) = (1 + @)*[(A(6) + 1) + B*(9)][1 — |e(e™)["] x

[(” 110 a(8) + 17 + B0 + 60) + 2aB(6)).

2
+a? ((40) - 17 + B°0)"] (12)

where @ = ¢/Np and A(f) and B(6) are real and image
parts of the function e*V+1)%(ef). '

Let us now assume the functions A(6), B(8) and |e(¢*®)|
are weakly changing in a neighbourhood of the point § =
—8. Then using relation (12) and this assumption the
width at half-power points for spectral estimate restored
by means of the proposed technique is obtained

Abos ~ F“%C, (13)

where

V/(A(G) — 1)7 + 952 (o) 1)

(A(fo) +1)2 + B%(60)

The relations (13)—(14) characterize the spectral estima-
tor in form (7) with arbitrary parametrization function e(z).
Using this relation a performance for spectral estimator
with concrete parametrization function can be obtained.

For example, in a particular case where (z) = 0 our
assumption is true and in this case C = 1. Substituting
C =1 into (13) we have a performance of Burg’s maximum
entropy spectral estimator. The width at half-power points
of spectral estimation restored by means of maximum en-
tropy method is

C =

ME _, 4o
Qbos” = F1

The relations (13) and (14) allow us to compare the spec-
tral estimator in form (7) with the chosen parametrization
function &(z) and Burg’s maximum entropy spectral esti-
mation.

Note, that the value C depends on parametrization func-
tion €(z) and can be in each particular case both larger (for
example, if A(80) = 0, B(6o) = 0.2) and smaller (for exam-
ple, if A(6) = 1, B(6) =~ 0.2) than 1. So, the family of

spectral estimators in form (7) has estimators with perfor-
mance both better and worse than that of Burg’s method.

Moreover, from relations (13) it follows that the restora-
tion performance improves with a decrease of the regular-
ization parameter ¢ and with an increase in the number N
of autocorrelation coefficients and the spectral line power p.

CONCLUSION

We have considered a novel approach to the spectral den-
sity estimation problem based on the moment method tech-
nique. Using this approach all possible extrapolations of the
autocorrelation function which are in agreement with a set
of known values were found. A wide spectral estimator’s
family has been obtained in terms of polynomials orthogo-
nal with respect to a given autocorrelation sequence. The
performance of the proposed spectral estimator with an ar-
bitrary parametrization function has been investigated.
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