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ABSTRACT

Based on physical considerations, Kaiser recently proposed a
new energy function for discrete time signals, known as Teager-
Kaiser Energy Function (TKEF). An interesting property of the
TKEF is that if the input signal consists of two closely-spaced
tones (amplitude modulated signal), the TKEF produces the
difference frequency tone (envelope signal). However, a
drawback is that the TKEF is highly sensitive to additive noise.
In this paper, we propose a Generalized TKEF (GTKEF) to
reduce the noise sensitivity. Fortunately, it turns out that the
generalization can be used to enhance the sum frequency tone as
well. This enables us to apply the GTKEF to resolve of two
closely-spaced tones. The result can be viewed as an interesting
nonlinear preprocessing scheme to transform a signal consisting
of two closeby frequencies at f; and f, into a signal consisting of
frequencies at (f, - f,) and (f; +f;). Clearly, it is much easier to
resolve the latter frequencies, whichever spectral analysis
method is used.

1. MAIN RESULTS

The original Teager-Kaiser Energy Function [1] of a discrete
time signal x(n) is defined as

e,(n) = x*(n) = x(n+1)x(n-1) (1

Simple analysis shows that the TKEF computed for two noise-
free closely-spaced tones yields the signal envelope, which is a
sinusoid at the difference frequency. However, there are two
shortcomings to this approach. One is that the TKEF is highly
sensitive to noise. Secondly, it does not permit us to determine
the sum frequency (which is required to estimate the individual
tone frequencies). We solve both problems by generalizing the
TKEF as follows:

e(n) = x*(n) - x(n+ M)x(n- M) @
where M is an arbitrary integer, referred to henceforth as the lag
parameter. We shall show that M can be chosen to enhance the
difference frequency (say M = M ) or the sum frequency (say M
= M). Putting the two GTKEFs together, we can define the
following nonlinear transformation of the signal x(n) which
translates a dual tone signal with frequencies at f, & f, into
another dual tone signal with frequencies at (f, + f;) & (f,- f). .

Y0 =0 ()~ vt M xtn— M, }+ {5 ()= sn+ MDx(n=M D) (3)

Spectral analysis of y(n) can easily resolve the two tones. Note
that a general nonlinear transformation of x(n) would result in a

1637

quad frequency signal with tones at 2f,, 2f,, (f, + f,), (f, - fy)-
Since f, & f, are assumed to be close to each other, (f, +f,), 2f,,
2f, are aiso close to each other and the problem of resolving the
tones is not simplified.

2. SIMULATION STUDIES

Consider a noisy dual tone signal
x(n) = A,Cos(Qn+®, )+ A,Cos(Q2,n+ D, )+ A,w(n) 4)

where A and A, are the amplitudes of the two sinusoids, £, and
Q, are the digital frequencies in radians/sample and are given by
Q, , = 2n f, Jf,, where f, , are the analogy frequencies and f, is
the sampling frequency. @, and @, are the arbitrary initial
phases in radians. w(n) is a zero mean, unit variance white noise
with A, determining the level. '

Figs la&b show the original TKEF ea(n) and its magnitude
spectrum for a signal x(n) with f; = 300, f, = 330 Hz and f, =
8000 Hz. Noise is assumed to be zero, ie. A; = 0 and the
sinusoid amplitudes are equal A, = A, = 1. Note that although
the difference frequency is dominant, the sum frequency (630
Hz) can also be seen in the spectrum at an attenuated level.
Moreover, when white noise w(n) (zero mean, unit variance,
Gaussian) is added with A; = 0.177 (signal to noise ratio SNR =
25 dB), the result becomes quite contaminated as illustrated in
Figs 2a&b.

We first apply the generalized TKEF to the noiseless case A, =
A,=1&A;=0. With the lag parameter M = 25, the GTKEF
e(n) and its magnitude spectrum are computed and are shown in
Figs 3a&b. Clearly the sum frequency component at 630 Hz is
enhanced in both the time and frequency domains. This example
demonstrates that the GTKEF can be used to determine the sum

frequency of a dual frequency signal.

We now apply the GTKEF to the noisy case A, =4, =1 & A, =
0.177 (SNR = 25 dB). Figs 4a&b depict the GTKEF and its
magnitude spectrum with lag parameter M, = 6. Clearly the
difference frequency component at 30 Hz is enhanced
considerably compared to the results produced by the original
TKEF in Fig 2. Similarly, Figs 4c&d show the GTKEF with lag
parameter M, = 25, where we see that the sum frequency is
enhanced as in Fig 3. This example demonstrates that the
GTKEF can be used to suppress the effects of additive noise and
also determine the sum frequency of a dual frequency signal.
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3. ANALYTICAL BASIS

We shall now produce analytical results to support the simulation
studies.

3.1. Noiseless Case

Referring to (4), assume that there is no noise and that &, and @,
are fixed, the GTKE function consists of three components: the
DC component, and the two sinusoids with the sum and
difference frequencies Q_and Q, respectively:

E(n) =D+ A,Cos(Qn+D,)+A,Cos(Qun+D,)

=D+eJ(n)+ed(n) )

where
D= AIZSin2 (MQ)+ AzzSin2 (MQ,) (the DC component)
A, =2A,A,Sin*(MQ, /2)
Q=Q +Q,
D, =D+,

A, =2AA,Sin*(MQ, /2)
Q,=0Q-Q

D, =D ~D,

We shall now show that M can be selected to make A, >> A or
vice versa. Ignoring the DC component, define the Signal

Enhancement Ratio (SER) to measure the relative enhancement
quality of the sinusoids of €2, and Q_as follows:

.M
a Al Sm‘TQ,
SER, = VR (6a)
* Sin‘TQd
.M
SER LA Sm‘?Qd — (6b)
oA Sin‘%ﬂ, SER,

Fig 5 shows the dependence of SER, (or I/SER) on M. Clearly,
two M's, namely M, and M, can be selected to maximize SER,
and SER. We can see M =1 gives the maximum value of SER,
so that the original Teager-Kaiser energy function is optimal for
the difference frequency in the noiseless case.

3.2. Noisy Case

Assume that w(n) is a zero mean, unit variance, white Gaussian

noise. We shall express the GTKE function e(n) as follows:
e(ny=D+e,(n)+e;(n)+e,(n) (7a)

where the first three terms are defined in (5) and the last term
contains the remaining noise-related quantities, with

Ele, (n)] = A2 (Tb)

var[E, (m)] = 3(AZ + ADA? + ATE[w*(n)] (7b)

Furthermore, we shail measure the performance by the Signal
Enhancement Ratio whose definition is extended to
accommodate the stochastic case as the ratio of the variance of
the signal term e(n) to the variance of the noise term e (n).

Assuming that the desired term is the difference frequency tone,
the Signal Enhancement Ratio (SER) turns out to be:

SER, 4 varfe;(m)]
var(e;(n) + e, (n)]
sin* 2L 8
_ 7 4 (8a)
M 3(A} A2 247
ind il G H o I P 34
sin” = Qd+2[A12 +A22)o +A12A220
Similarly, the SER for the sum frequency component is:
A
SER, = var[e, (n)]
var(e, (n) + e, (n)]
WM
sin* TQ" (8b)
T M 3 A 24}
sin” - ,+;[;}-+;§—) Ao

The relationship between M and SER, & SER_ is illustrated in
Figs 6a&b. We can see M = 1 is no longer the optimal choice in
the difference frequency case!

3.3. Nonlinear Preprocessor

This analysis suggests the general scheme shown in Fig-7 for
resolving two closely spaced tones. The nonlinear processor is
based on GTKEF and defined by (3). With M . and M, optimally
chosen to enhance the sum and difference frequencies, this
preprocessor can be seen as an interesting transformation taking
a signal consisting of two closeby frequencies at f, and £, into a
signal consisting of frequencies (f, + f) and (f, - f,). The second
block can be based on any spectral analysis method.

3.4. Approximate Formulas for Optimum Lag Parameters

Although the expressions for SER are rather complicated for
determining the optimum lag parameters, we have produced the
following approximate relations for the optimum lag parameters
for the sum and difference frequencies. They are based on the
assumption that the difference frequency is much smaller than
the sum frequency and that the SNR is less than 50 dB, which is
true in most of the practical situations. The formulas are:

) 12 )
Md=m:|: v +05] (9a)
M u-n{ b 05] 9b

=inf —=——+
3 ‘f|+f2 ( )

where i = 1, 2, 3... Larger values of the i produce greater signal
enhancement but introduce longer delay (See Fig-6).
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Fig. 7 General Scheme for Resolving Two
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Fig. 6(b) SER (M) in dB: SNR =25dB.



