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ABSTRACT

This paper addresses the harmonic retrieval problem in
colored noise. As contrasted to the reported studies in
which Gaussian noise was assumed, this paper focus on
additive non-Gaussian ARMA noise. We propose an
unified prefiltering-based approach to this problem. Our
approach is hybrid in the sense that 3rd-order cumulants
are first used to identify the AR part of the non-Gaussian
noise process, and then correlation-based high resolution
methods may be used for the filtered output process to
estimate the parameters of harmonics. Simulation examples
are presented to demonstrate the high resolution of this
approach.

1. INTRODUCTION

The last decade has witnessed considerable research efforts
aimed at harmonic retrieval in noise. Particularly, in recent
years higher order cumulant-based harmonic retrieval has
received increasing interest. The biggest advantage of
cumulant-based methods over correlation-based methods is
that the former handle additive colored Gaussian noise
automatically, and thus boost signal-to-noise ratio in Gaus-
sian noise cases, but the latter do not. The fourth-order
cumulant based ESPRIT [1], MUSIC-like algorithm [2]
and AR modeling approach [3] were recently developed.

Colored non-Gaussian noise environments are frequently
related to sonar systems and signal detection. More
recently, the problems of detecting sinusoids in colored
non-Gaussian noise were studied in {4] and [5]. We
remark that the work reported in [4] and [5] provides
different non-parametric solutions to the hypothesis tests
for detecting existence of sinusoids rather than harmonic
retrieval for estimating the number of sinusoids and their
frequencies. To our best knowledge, until now there are no
reports on harmonic retrieval in additive non-Gaussian
ARMA noise. The objective of this paper is just to deal
with this problem.

We show that the AR coefficients of the non-Gaussian
ARMA noise with asymmetrical distribution can be
identified by using the 3rd-order cumulants of the output
process, and that the parameters of harmonics can be
estimated with the correlations of the output process
filtered by the AR parameters of non-Gaussian ARMA
noise. Therefore, an unified prefiltering-based high resolu-
tion approach is proposed for estimating the parameters of
harmonics in non-Gaussian ARMA noise. Simulation
results are given to illustrate the performance of the new
approach.
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2. PRELIMINARIES

Consider the following output time series with zero mean:

y(n)=s(n)yv(n) )
where s(n) is a noiseless real-valued harmonic signal

specified by
P
s{n)¥=Y o;sin(w;n+¢;).

i=l

0

where @; and o; are the normalized frequency and ampli-
tude of the ith harmonic, respectively. We assume that the
harmonics are un-coupled, and the ¢;'s are random vari-
ables uniformly distributed over [-m,n]. Phase randomiza-
tion in the harmonics implies the availability of multiple
records for consistent estimation of the cumulants (and
correlation).

In comparison with most previous work, the additive noise

v(n) in (1) is assumed to be a non-Gaussian
ARMAC(p,,q,) process given by
Py LA
vin) =Y d@iwn-inYc(er—j) (39
i=l j=0
or
D(q)v(n)y=C(qle(n) (3b)
P 9
where and

D(@)=Yd (i),
. i=0

g 'e(n)=e(n-j).

For the model (1), the following conditions arc assumed to
hold. -

AS1) The transfer function H(z)=C(z)/D(z) is free of
pole-zero cancellations, and is exponentially stable. The
noise is causal, but may be of nonminimum phase.

C@)=3clidg™
i=0

AS2) {e(n)) is zero mean and i.id. with asymmetrically
distribution. i.e., Y5, =E [e%(n)]20 and finite moments.

AS3) {s(n)} is independent of {e(n)} and thus of {(v(n)}.

Condition (AS2) is a key assumption in this work. How-
ever, this condition is satisfied for many distributions, such
as exponential distribution.

Recall [3] that the third order cumulants of harmenic sig-
nal in (2) are identically zero. That is'to say, for the model
(1) we have Cs,(mym2=Cs, (mymy). Consequently, the
AR order p, and AR coefficients d(i),i=l,...p; of the
non-Caussian ARMA noise model can be estimated by
using Ci,(my,my). By Giannakis and Mendel [6], the
determination of the AR order and the estimation of AR
parameters can be implemented by SVD-TLS method [7.

0-7803-2431-5/95 $4.00 © 1995 IEEE



In summary, the problem of interest is to estimate the
number of harmonics, p, and their frequencies ®;, pro-
vided that the AR order and AR parameters of noise pro-
cess have been available.

3. THEORETICAL RESULTS
3.1 Prefiltering
Multiplying (1) by D (g), we have

D(q)y(n)>=D(q)s(n)+D (q)v(n). )
Define
Py
ynxE=D(qy(n )=§od @)y (n-i) &)
Py
3(n)=D(q)s(n )=§0d (D)s(n=i) (6)
9

¥ (n)=D(q)v(n)}=C(qle(n)=3c(i)e(n—i) @
i=0

then (4) can be rewritten as
()= (v (n). ®)

We refer to §(n) as the filtered output process and ¥(n) as
the filtered harmonic signal. Interestingly, since ¥#(n) is a
pure MA(g,) process, we have

Ry(m)=R,(m), m>q. )

3.2 Autocorrelations of 3 (n)

It is well known that the autocorrelation of harmonic sig-
nal in (2) is given by

R, (m):-;— ia;’cos (o;m). 10)

i=1
For the filtered harmonic signal 5(n), we have the follow-
ing result.

Proposition 1: The autocorrelation of the filtered harmonic
signal §(n) is
12 217
Ri(m)=52a,-2-22d(k)d(l)cos[0),-(m+k-!)]. (11)

i=1 k=0l=0

Proof: From (6), we have

EB{n)s(n+m)]
71 Py

=E[Y d(k)s(n=k)Yd()s(n+m-1)]
k=0 1=0

1P

=3 Y dk)d()E [x (n-k)x (n+m-1)]

k=01=0

namely,
P1Py

Ry(m =Y. 3 d (k) ()R, (m+k-1). (12)
k=0l=0

Combination of (12) and (10) yields (11).

Proposition 2: The autocorrelation of the filtered output
process ¥ (n) satisfies

1 P PPy
Rj(m)=-§-2a,-2-§°‘§d(k)d(l)cos[0),-(m+k-1)]. m>q,.

i=1

(13

Proof: Combination of (11) and (9) yields (13) directly.

From (13) it is seen that the autocorrelation of the filtered
output process § () contains the useful information of har-
monic signal. i.e., the number of harmonics, p, the fre-
quencies, @;’s, and amplitudes, o;’s. Therefore, the exist-
ing high resolution methods for harmonic retrieval can be
extended to new corresponding versions which are avail-
able for the filtered output process. In the next section, an
unified prefiltering-based approach for harmonic retrieval
in non-Gaussian ARMA noise is proposed.

4, PREFILTERING-BASED APPROACH

Harmonic signal in (2) satisfies the following Yule-Walker
equation

%
Ya()R,(m—-ix=0, any m. (14)
i=0

The number of harmonics, p, can be determined via thz
rank of the autocorrelation matrix, and the frequencies
w;’s caz{’l be obtained by using the unit modulus roots z; of

A@)=Xal(i)z"=0.
i=0

A logic question to ask is "What is the relatdonship
between autocorrelations of the filtered output process and
the AR parameters of harmonic signal, a(i).i=1,...2p 7"
To answer this question, let us first consider the relation-
ship between R;(m) and a(i).

From (12), we have

2
Ya(i)R;(m—i)
i=0

717 %
=22d(k)d(l)x a(i)R,(m+k—-I1-i)
£=0i=0 i=0
=0 (15)

‘;Jphere we have used (14) which yields directly
Ya(i)R,(m+k~1-i)=0. If m>2p+q, is taken in the above
i=0

equation, then all lags used on R;(:) are greater than gq,.

Consequently, from (9) and (15) it is straightforward to
see that

2
>al )R). (m—ix=0, m>2p+q,. (16)
i=0

Several remarks about (16) are given.

Remark 1: For p complex harmonics in additive non-
Gaussian ARMA(p,,q,) noise {v(n)], the counterpart of
(16) is given by



ia (i)Ry(m—i)=O, m>p+q;. an
i=0

Remark 2: Equation (16) can be used to solve for the AR
parameters a(i)’s of the harmonic signal model, based on
the autocorrelations of the filtered output process ¥(n).
Although we typically do not know p and ¢, a priori, it
is generally possible to make an educated guess of p and
q: so as to ensure that p,>2p and g.>q;, then, the AR
order 2p and AR parameters a(i).i=l,...2p can be
estimated by using SVD-TLS method [7].

Equation (16) can also be considered as the modified
Yule-Walker (MYW) equation for harmonic retrieval in
non-Gaussian ARMA noise. Since the autocorrelations of
{# (n)) contain the useful information of the harmonic sig-
nal, it can be shown that by constructing a new matrix
pencil, the ESPRIT can be extended to a new ESPRIT
available for an additive MA noise with unknown correla-
tion functions, and that by applying this new ESPRIT to
the filtered output data {j(n)}, we can retrieve the har-
monics in the non-Gaussian ARMA noise.

In summary, we can develop an unified approach to har-
monic retrieval in non-Gaussian ARMA noise.

(1) Use the third order cumulant of the output data to
determine the AR order p; and AR parameters,
d(i), i=1,p, [6].

(2) Use the estimated AR polynomial and (5) to prefilter
the output data.

(3) Apply any correlation-based method for harmonic
retrieval in additive MA noise to the filtered output data in
order to retrieve the harmonics.

Such an unified prefiltering-based approach is a hybrid
method in the sense that a cumulant-based technique is
first used to identify the AR part of the noise, and a
correlation-based technique is then used to make harmonic
retrieval in non-Gaussian ARMA noise. In the next sec-
tion, we used the modified Yule-Walker equation method
to simulate the harmonic retrieval problem.

5. SIMULATIONS

To demonstrate the effectiveness of the prefiltering-based
approach for harmonic retrieval in non-Gaussian ARMA
noise, we present a numerical example in this section.

Consider the following output process
y (n)=VGZsin (210.2n W\2sin (210.213n v (n)

where v(n) was a non-Gaussian ARMA(2,2) noise process
given by

v(n)-1.5v(n-1)+0.8v (n-2)=e(n)-0.75¢ (n—1)-2.5¢ (n-2).

It is noted that the noise spectrum has a strong pole at
f=0.1. Independent exponentially distributed random devi-
ates were generated for the input sequence of noise,
{e(n)}, from the GGEXN subroutine in the International
Mathematical and Statistical Library (IMSL). In the simu-
lations, twenty independent realizations of noise data y(n),
each consisting of 512 samples, were generated at each
fixed SNR, and three methods were used to compare their
performances. The three methods used are the direct corre-

lation method [7], the direct (4th-order) cumulant approach
[3), and the prefiltering-based approach based on equation
(16) of this paper.

We tested three SNR cases, ie., 0.2=1(0dB),
62=10(~10dB) and ¢2=100(-20dB). By the SVD, p,=2
and p=2 were determined in each run. Table I shows AR
parameter estimates of the noise model. Table II shows the
results of frequency estimation given by the three methods.

From the simulations, it is seen that the direct correlation
based and direct cumulant based estimates are considerably
biased and could not retrieve the given harmonics in each
case, however, the prefiltering- based approach of this
paper shows excellent resolution in the harmonic retrieval
even at rather low SNR'’s. Although the AR parameter
estimates of the noise model are biased and of high vari-
ance, the frequency estimates via the new approach show
small bias and low variance.

6. CONCLUSIONS

This paper has analyzed the harmonic retrieval problem in
additive non-Gaussian ARMA noise. An unified
prefiltering-based approach has been proposed. The new
approach consists of AR modeling of the noise process
followed by filtering of the noisy time series followed by
correlation-based harmonic retrieval. Simulations have
shown the effectiveness and high resolution of this
approach. Finally, we remark that although the whole
ARMA modeling of the non-Gaussian noise is available, it
is not a practical algorithm to whiten the non-Gaussian
noise. This is because that the filter D(z)¥C(z) is non-
causal and is not implementable if the noise is of non-
minimum phase, or is unstable if the MA polynomial has
91
zeros such that C(z)=Y ¢ (i)27'=0 for | z| =1.

i=0
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TABLE I

Statistics of AR Parameter Estimates Obtained via the Prefiltering-Based

Approach (N=512 in Each Run, 20 Monte Carlo Runs)

Noise Model b() b(2)
True -1.5 0.8
SNR = 0dB -1.5876(0.2157) | 0.9303(0.0831)
SNR =-10dB | -1.5723(0.1773) | 0.9016(0.0799)
SNR = -20dB | -1.5102(0.1390) | 0.8679(0.0772)
TABLE II

Statistics of Frequency Estimates Obtained via Three Methods

(N=512 in Each Run, 20 Monte Carlo Runs)

Frequency f1 fa f3
True 0.213 0.2
SNR = 0dB
Direct Correlation :
(2p=4) 0.2075(0.0009) | 0.0931(0.0058)
(2p=6) | 0.2214(0.0143) | 0.1825(0.0786) | 0.0856(0.0368)
Direct Cumulant
(2p=4) 0.2004(0.0368) | 0.0754(0.0207)
(2p=6) 0.2048(0.0342) | 0.1143(0.0543) | 0.0743(0.0632)
The New Approach | 0.2129(0.0007) | 0.2002(0.0006)
SNR = -10dB
Direct Correlation
(2p=4) 0.2079(0.0016) | 0.0920(0.0057)
(2p=6) 0.2083(0.0086) | 0.1065(0.0011) | 0.0786(0.0161)
Direct Cumulant )
(2p=4) 0.2042(0.0098) | 0.1042(0.0084)
(2p=6) 0.2109(0.0502) | 0.1058(0.0528) | 0.0675(0.0530)
The New Approach | 0.2128(0.0008) | 0.2005(0.0015)
SNR=-20dB
Direct Correlation
(2p=4) 0.2061(0.0022) | 0.0926(0.0067)
(2p=6) 0.2079(0.0008) | 0.1095(0.0170) | 0.0763(0.0153)
Direct Cumulant
(2p=4) 0.2008(0.0053) | 0.0842(0.0076)
(2p=6) 0.2143(0.0068) | 0.1145(0.0182) | 0.0845(0.0253)
The New Approach | 0.2148(0.0030) | 0.1992(0.0031)
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