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ABSTRACT

In this paper, we investigate the problem of model order
selection of damped sinusoids from a Bayesian perspective.
We derive a maximum a posteriori (MAP) criterion through
a combination of Bayesian inference and predictive densi-
ties. The MAP criterion is more appropriate for damped
sinusoidal models (and transient data models in general)
than are the SVD based information theoretic criteria in
[1]. Simulation results are provided that display the break-
down of the AIC and MDL when the data record length
is not properly coupled with the information bearing por-
tion of the data model. This deterioration in performance
is related to both, the underlying asymptotics upon which
the AIC and MDL rules were originally based, and to their
invalid penalty terms. Conversely, the MAP criterion is not
based on asymptotics, and proves to be more reliable and
consistent when the observation length is varied.

1. INTRODUCTION

The parameter estimation of multiple damped sinusoids su-
perimposed in noise is of interest in many branches of ap-
plied science. Data in speech analysis, biomedicine, and
other areas such as seismology and radio astronomy can be
accurately represented by models of this type. Before an
effective estimation procedure can be applied, however, the
number of signal components (i.e., the model order) must
be evaluated. This article specifically addresses this issue.

We have previously developed a MAP criterion [2], [3],
for the determination of the number of damped signals in
noise. In [2], the MAP procedure was implemented for
damped sinusoids through the use of asymptotic approxima-
tions, while in [3], we considered the more difficult problem
of damped exponentials.! This problem was approached
through Monte Carlo adaptive importance sampling inte-
gration. A Gaussian importance function was appropriate
for this case, since the integrands were relatively well be-
haved (i.e., they were not so sharply peaked).

*This work was supported by the National Science Foundation
under Award No. MIP-9110628.

1When the signals have no frequency components, they are
more highly correlated and are thus more difficult to discriminate
between.
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Following the approach in [3], we will once again invoke a
numerical integration technique for realizing our criterion.
The present procedure will differ from that in [3] in that
a multivariate Cauchy probability density function (p.d.f.)
will represent the importance function for the Monte Carlo
procedure. The long tails of the Cauchy guard against in-
stability while still capturing the essential features of the
integrands kernel. The location parameters for the impor-
tance function are evaluated by applying a maximum like-
lihood estimation procedure for the parameters of each of
the hypothesized model orders. The coverage region is set
by matching the spread parameters of the Cauchy with the
support region of the integrand.

A performance evaluation between the MAP criterion
and its SVD-based counterparts is given by applying all
three selection rules to the identical two component data
model in [1). The signal to noise ratio (SN R) will be fixed,
and the data record length varied. This experiment clearly
demonstrates the superior performance of the MAP crite-
rion over both, the AIC and MDL.

This paper is organized as follows: In Section 2 we for-
mulate the problem and state the objective. Section 3 will
follow with the general derivation of the MAP model selec-
tion criterion, with the special case of damped sinusoids in
independent identically distributed (i.i.d.) white Gaussian
noise being considered. Simulation results are provided in
Section 4, and detailed discussions are contained therein.
Finally, in Section 5 we will conclude the paper.

2. PROBLEM FORMULATION-

The general problem of interest can be characterized by the
following model:

z[n] = Zs;[n;ﬁ‘»] + €[n;¢], n€ZNn, g€ Zq (1)

1=0

where Zy = {0, 1, --- ,N — 1} is the finite set of non-
negative integers, and Zq is similarly defined. The individ-
ual signal components s;i[n;8,] are deterministic, and are
completely specified up to the unknown parameter vectors
9, i=1, 2, --- ,g. The noise samples ¢[n; 9] represent a
sequence of random variables whose parametric distribution
is known, but whose parameters, 1, are not. The model or-

der ¢ is also unknown. Given the observed data z[n], the
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objective is to estimate g.
Note that the model in (1) can be written in a concise
vector-matrix form as

z=H(,) +¢ 9€2Zq (2)

where z and ¢ are N x 1 vectors, and ﬁq(g_q) isan N x ¢
matrix whose i’th column is of the form

AT =[s:(0:8,), 8:(1;8.), -+ (N —1;8)]-

3. MAP MODEL SELECTION PROCEDURE

We define a model selection criterion which selects the
“best” model as the one that maximizes the posterior prob-
ability mass of ¢ given the observed data z. That is,

Gmap = arg max {r(qiz)}. (3)

Applying Bayes’ rule and marginalizing the posterior p(q|z)
over the nuisance parameters, we can write [3],

{ Jo, F&10.8)F @ lo)p(a)dd, }
I Js, flalk,8,)7(@,lk)p(k)dd,
(4)
where §, = [8T 87 --- aT _1/£T]T, and Oy is its parameter
space.

gMAP = arg max
qGZQ

Without loss of generality, we will assume that all models
are equiprobable, thus p(q) = %, Vq € Zg. Also note that
the denominator in (4) is g-independent, and therefore

dmap = arg max {/e f(zlq,i)f(ﬂlq)di}- (5)

Clearly, the employment of (5) requires the specification
of a prior p.d.f. for f(8,lg). To avoid the biasing which
usually occurs with a proper prior, we would like to main-
tain objectivity in the criterion by directly applying the
noninformative Jeffreys’ prior.? Unfortunately, however, if
we directly apply Jeffreys’ prior to (5), the model selection
rule will become arbitrary {4]. Still, we would like to use
a noninformative prior because they are known to lead to
the maximum expected information gained by the observed
data.

In order to avoid the arbitrariness in the selection rule
while still maintaining a high degree of objectivity, we will
apply the concept of predictive densities and estimation-
validation. This involves partitioning the observed data z
into two mutually exclusive® subvectors, £, and £y _p. The
portion z is comprised of the latter R “training data”
samples of z, while z,_x contains the remaining N — R

2 Jeffreys’ prior is approximately noninformative if it is taken
to be proportional to the square root of the Fisher information
matrix [5].

3This type of partitioning is sometimesreferred to as “honest”
validation.

samples. The application of this approach to our initial
criterion leads us to a slightly different selection rule

. _ f(zlg)
b = e s (eln 2o} = s {205 )

(6)
Now upon marginalizing both the numerator and denom-
inator in (6) we have the Bayesian MAP model selection
criterion:

) Jo, Ju F(2la, 85, 9)f (8, $la)dvds,
gMAP = arg max
9€Zq feq Iy f(zrle,8,, %) f(8,, ¥la)dede,
(M
Note that now the identical prior p.d.f.’s appear in both the
numerator and denominator, so that when we specify the
noninformative prior, a cancellation of the arbitrary con-
stants takes place, thus eliminating the overall arbitrariness
in the criterion.

Application to Damped Sinusoids in Gaussian Noise

For this special case, the signal components si[r;8,] in
(1) are of the form

si[n;8,] = aie %" cos[27 fin + ¢] (8)

and the noise samples are independent identically dis-
tributed as e[n] ~ A(0,0%). The unknown parameters of
the i’th signal are its amplitude (a;), frequency (fi), phase
(#:), and damping factor (a:). The noise variance o? is also
assumed to be unknown.

To lower the dimensionality of the integrals that will ul-
timately result in the selection rule, we apply the following
transformation to each of the signals

aie~ %" cos(2x fin + ¢i)

= a; cos pie """ cos(2r fin) — aisingie” " " sin(27fin)
(9)

This allows the data model to be expressed as

q
sfn] = 3 lai cos gie =" cos(2x fin)

i=1
—a;sin pie " sin(2xfin)] + €[n], n € Zn, ¢ € Zq (10)

or equivalently, in matrix form as

z=Hpb, +¢ 9€Zq (11)

=T =g
where
_ T T T
_E.q =[c;3) 628, -+ Eq;’;q]x kq =0 by - .b.q

with

cF =1 e™* cos(2xfi) --- e~ V=1 cos(2x fi[N — 1])],

-t
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[0 e~ sin(2xfi) --- e~ =Ysin(2x fi[N - 1])],

s

and

b, = [aicos @i —aisin éi], 1=1,2,...,q.

Applying (11) to the criterion in (7), and analytically inte-
grating over the vector b and noise variance o®, we arrive
at the MAP model selection criterion for damped sinusoidal
signals in white Gaussian noise

. )
= arg max { —p=—"-
dMAP gqezq T( R;21)

N—=2
J; fa., |HZ yH |3 @5 Przy) ™7 Ddaydf
—
-1 _(R=23
J; fgq |HT o H o ol ™% (25 PRzR) "7 Ddadf
4,

(12)
Now all we need to do is evaluate the integrals in (12), but
this is not exactly a trivial task. The dimensions can ob-
viously be quite large, and our investigations into the inte-
grands in (12) have shown them to be very sharply peaked,
particularly for N large and high SNR’s. For these rea-
sons we will apply Monte Carlo importance sampling with
a multivariate Cauchy p.d.f. as the importance function to
implement our criterion.
The following section will present simulation results com-
paring the MAP criterion to the SVD-based AIC and MDL
which are given by {1]

AIC(k)= (N =L)- L™ (8,,z) + 2(2k +1)

MDL(k)= (N - L)- £¥(8,,z) + (2k+1)In(N — L).
Here L(")(é 4> Z) is a likelihood term which is based on the
singular value decomposition of the modified backward lin-

ear prediction data matrix, N is the length of the observed
data z, and L represents the prediction filter order.

4. SIMULATION RESULTS

In order to demonstrate the performance of the MAP model
order selection criterion, we considered the following two-
component damped sinusoidal model:

z[n] = Z aie~ %" cos(2x fin+¢i) + €[n], n =0, 1,...,N—1.

1=1

We conducted 100 independent trials for sequences whose
lengths varied between N = 64 and N = 256 samples. The
variance of the noise process ¢[n] was adjusted so that the
peak SN R was fixed at 15dB. The true values of the signal
parameters were set at a3 = a2 = 1.0, ¢1 = ¢2 =0, f1 =
0.20, f2 =0.24, a; = 0.10, a2z = 0.05.

For each sequence length, N, the prediction filter order L
of the SVD-based AIC and MDL was adjusted so that the
backward linear prediction data matrix remained square.
This allowed for these criteria to perform optimally, thus
providing for a truly fair comparison between the MAP,

AIC, and MDL selection rules. For each trial we fit the
observed data to each of the models:

Ho: z[n] = ¢n]
He: zln] = Y& sim;8]+en), ke {1,2,3}
(13)
where

8:[n;8,] = aie” " cos(2x fin + ¢:).

Note that Ho represents the “noise only” model. The re-
sults of this experiment are shown in Table 1, and are graph-
ically depicted in Figure 1. They clearly indicate that the
selection accuracies of the AIC and MDL both deteriorated
as the length of the observation vector z superseded the
actual information portion of the sequence. The MAP cri-
terion on the other hand, seemed to improve somewhat as
more data were obtained. For example, when N = 64 sam-
ples, the MAP, MDL, and AIC detection probabilities were
0.84, 0.89, and 0.68, respectively. At N = 64, the total
sequence length was perfectly matched with the decay rate
az = 0.05, and for this reason, the MDL may have been
able to perform successfully. The MAP’s detection perfor-
mance was only slightly below that of the MDL at N = 64,
while the AIC’s performance was significantly below either
of the other two criteria. Notice also that while the MAP
and MDL’s detection performance was nearly the same for
N = 64, the MDL tended to overparameterize (choosing
a2 3’rd order model 9 times out of 11 incorrect decisions),
and the MAP tended to adhere to the parsimony princi-
ple (i.e., it selected a lower order model for every incorrect
decision). Now examine what happened when the number
of data samples increased to N = 128. The relative per-
formances of the three criteria already began to contrast
considerably; for N = 128, the MDL’s probability of cor-
rect decision decreased to 0.69, while the MAP’s increased
to 0.93. The AIC’s detection performance also decreased
to 0.54. This trend also seemed to persist as the value of
N increased further. At N = 256 samples, the probability
of correct selection was 0.97, 0.29, and 0.25 for the MAP,
MDL, and AIC, respectively. This disparity in performance
is certainly much larger than what it was when N = 64 -
the data record length that was well matched to the signals
effective decay rate of az = 0.05. .

The interpretation of these results is fairly straightfor-
ward. The accuracy of the MAP strongly depends on how
well one is able to approximate the integrand by the impor-
tance function, which in turn depends on the precision of
its location parameters. As these location parameters were
estimated by a maximum likelihood method, we can gener-
ally expect their accuracies to improve* with an increasing
amount of data. The MDL criterion breaks down mainly
because its penalty term is incorrect for transient data mod-
els. The MDL’s penalty increases by the same amount for
each additional data sample, but with transient data, each

4For transient data, the maximum likelihood estimates will
only improve until the information in the datais exhausted. That
is, we can expect improved estimation accuracy only until a par-
ticular value of N is reached.
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additional sample carries a decreasing amount of informa-
tion, so by logical deduction, a constant penalty should not
be apportioned for each additional observation. The AIC’s
likelihood term is overly sensitive to N in comparison with
its penalty. That is, the changes in the loglikelihood of the
AIC due to different N are not properly compensated for
by its penalty.

" N lC!’iterioanol'Hll'Hlea“

predictive densities and estimation-validation. We applied
our criterion to the special case of multiple damped sinu-
soids in white Gaussian noise. The complicated integrals in
our criterion were solved by Monte Carlo importance sam-
pling. Simulation results were provided which displayed the
improvement in performance of the MAP criterion over the
SVD-based AIC and MDL for varying data record lengths.
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Figure 1: Probability of correct detection vs. datarecord length
(N), for the MAP (solid), AIC (dotted), and MDL (dashed)
model selection rules. These results are based on 100 independent
trials, for a fixed signal-to-noise ratio (SN R) of 15dB.

AlIC 0 0 68 | 32
64 MDL 0 2 89 9
MAP 0 16 | 84 0
AIC 0 1 61 | 38
100 MDL 0 2 79 | 19
MAP ] 12 | 88 0
AIC 0 5 54 1 41
128 MDL 0 11 | 69 | 20
MAP 0 7 93 0
AIC 0 7 38 | 55
150 MDL 0 13 | 55 | 32
MAP 0 5 94 1
AlC 0 21 | 34 | 45
200 MDL 0 31 | 40 | 29
MAP 0 2 98 0
AlIC 0 24 | 25 | 51
256 MDL 0 46 | 29 | 25
MAP 0 3 97 0

Table 1: Performance comparison between the MAP and
SVD-based AIC and MDL criteria for various data record lengths
(N). Entries indicate the number of times out of 100 indepen-
dent trials that the given criterion selected a particular model.
The correct model order is two (H2), and for all trials the SNR
was fixed at 154B.

These erratic effects are primarily due to the fact that the
original AIC and MDL were derived by way of asymptotics,
and as such, their validity strongly depends on large infor-
mative data records. For decaying sinusoids or any tran-
sient model, their utility as reliable model selection criteria
is therefore questionable. The MAP criterion does not rely
on asymptotical assumptions, and the decreasing informa-
tion contained in each additional sample is automatically
accounted for in the criterion. It is apparent that the AIC
and MDL can perform reasonably well for transient models
if there is some a priori knowledge regarding the length of
the information bearing portion of the observation vector.
Since this information is usually unavailable, the MAP cri-
terion seems to be the more sound method for resolving the
model order selection problem of transient signals in noise.

5. CONCLUSION

Following the Bayesian approach to statistical inference, we
developed a MAP model order selection criterion by way of

(1]

(2]

(3]

[4]

(5]
(6]
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