A MULTIPLE WINDOW METHOD FOR ESTIMATION OF A PEAKED
SPECTRUM

Maria Hansson, Tomas Gansler and Goran Salomonsson

Signal Processing Group
Dept of Electr. Engineering and Comp. Science, Lund University
Box 118, S-221 00 Lund, Sweden

ABSTRACT

This paper proposes a new multiple window method for
estimating a peaked spectrum. The multiple windows are
adapted to the signal, giving a less biased estimate for esti-
mation of peaks than does the Thomson Multiple Window
method. Still the result from estimation of a flat spectrum
shows comparable results in variance reduction.

The method is based on solution of an eigenvalue prob-
lem where the eigenvectors of a special correlation matrix
are used as multiple windows. The correlation matrix corre-
sponds to a low frequency dominant spectrum with limited
bandwidth. The design results in windows that are fur-
ther improved by a penalty function to reduce leakage from
nearby frequencies. This gives a better estimate when the
process contains of large spectrum dynamics.

1. INTRODUCTION

The problem of estimating a spectrum from a finite (small)
number of samples of a stationary process is well known.
The main problems are to achieve a good resolution and a
low variance in the estimate. Among the non-parametric
methods, the Multiple Window method by Thomson [1}
should be mentioned. It is designed for white noise and
is consequently preferred for smooth spectrum or spectrum
that is constant in a limited frequency range. However,
when the spectrum contains peaks, the resolution of these
is limited to the bandwidth decided in the window design. A
better way is then to find windows that describe spectrum
including peaks. By choosing a low frequency dominant
peaked spectrum for the window design, the bias in the
peaks is reduced, compared to the Thomson Windows.

2. PROBLEM FORMULATION

One way to express spectrum estimation is to give it a
bandpass filter interpretation, [2]. This can be seen as a
frequency shift of fo followed by a lowpass filter, see Fig-
ure 1. The variance estimate from the output of the filter
gives the estimate of the spectrum, S;(fo), at the shifted
frequency. The resolution is decided from the bandwidth of
the filter H(f).
The estimate can be written as

&5 = $z(fo) =/

—-B/2

B/2

|H(H)I*S=(f — fo)df (1)
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Figure 1: Spectrum estimation expressed as shift followed
by a lowpass filter.

where B gives the resolution of the estimate. Under the
condition that B is given, the goal is to maximize the power
output from the filter. For fo = 0 Eq. (1) is rewritten as

B2
max / H(DIPSa(F)df- @)
~BJ2

Defining H(f) = h7¢(f) with h = [h(0) h(1) ... h(M —1)]
and ¢(f)=[1 eI f . e'Jh(M'l)f]T gives

B/2
math/ é(£)S=(f)é* (f)df h =

—~B/2

maxh?Rh (3)
where the M x M Toeplitz correlation matrix R has the
elements r(mi,mz) = r(I) = rz(1) * f=sinc(£!) where { =
{m2 — m1]. The maximized output is limited by the con-
straint that hTh = 1. With the presumption that spectrum
might include peaks, Sz(f) is specified as a low frequency
peaked spectrum which is bandlimited to B/2 as in Fig-
ure 2. In this paper this is done by calculating the co-
variance function for a low frequency dominating peaked
spectrum from a polynomial function. The sharpness is de-
cided by the order of the polynomial and the resolution by
a box multiplying the polynomial function.

3. SOLUTION

The solution of Eq.(3) is given by the corresponding eigen-
vector to the largest eigenvalue by

Rqi=Xiqi t=1.. M. (4)

To find the multiple windows, the optimization problem is
reformulated as

max trace QTRQ subject to QTQ =1 (5)
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Figure 2: The cut low-frequency peaked spectrum where
the sharpness of the peak is decided from a polynomial and
the resolution from the box cutting function.

where Q = [q1 qz ... Qa]. The multiple windows are given
by the eigenvectors corresponding to the K largest eigen-
values where K<M. The spectrum estimate is given as

K y T 2 K
2im = UL S il a(e? 0)

where x is the sampled data vector of length M and ®(f)
the diagonal matrix with ¢(f) = [1 e=72"f . e—i2m/(M-1)]
at the diagonal. The new weighting factor A is normalized,
thus Ef; AP = 1. The eigenvectors fulfil the requirement
of being orthogonal and they also give a known bandlimited
resolution. We call this method the Polynomial Multiple
Window method (PolyMW).

However, the demand for low sidelobes to reduce the
leakage from nearby frequencies have not been taken into
consideration. One cause for large sidelobes is that the
eigenvector starts and ends in a discontinuity. This gives
a large contribution at all frequencies. To reduce the side-
lobe leakage, a penalty function that compensates disconti-
nuities, if they exist, has been introduced. The problem is
then reformulated into

5:(f)=

max trace QTRQ subject to QTWQ=1  (7)

where the diagonal penalty matrix W is defined with a
’1/raised cosine’ function at the diagonal. The solution is
given by the eigenvectors and eigenvalues of the generalized
eigenvalue problem

Rq,=AiWq; i=1.. M. (8)

This method is called the Weighted Polynomial Multiple
Window method (W-PolyMW).

4. NUMERICAL EXAMPLES

To show both advantages and disadvantages of the proposed
methods, three different examples of processes are investi-
gated. The data contain 25 realizations of 128 data samples
each. A picture of the variance is given as the 25 different
estimates are plotted. The order of the polynomial func-
tion used for the window design, see Figure 2, is n = 20 for
the two methods described in section 3. These methods are
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Figure 3: The spectrum estimates of the different meth-
ods in Example 1. True Spectrum: Solid line, Spectrum
Estimates: Dotted lines.

compared to a single window method with Hanning win-
dow (Hanning) to see the difference in variation (variance)
between a multiple window and single window method. A
comparison is also made to the Thomson Multiple Window
method (ThomMW). For the three multiple window meth-
ods the resolution is set to B = 0.08. The eigenvectors
that correspond to the K=38 largest eigenvalues are chosen
as windows.

Example 1

The PolyMW and W-PolyMW methods have the ability of
estimating peaks in spectrum with less bias than e.g. the
ThomMW method. This is shown with an AR-process of
order 2 with poles in 0.92e%727°!  The true spectrum is
represented by the solid line in Figure 3. The dotted lines
are the spectrum estimates and their spread indicates the
variance. The single Hanning window shows large variation
compared to the multiple windows. The ThomMW method
also shows the characteristic broadening of the peak that is
given by the resolution of the windows. With the PolyMW
and W-PolyMW methods, the peak is given as a less bi-
ased estimate. The choice of more signal adapted windows
thereby results in a better estimate without loss in variance.

Example 2

In this example the process does not contain peaks, but is
characterized by a lowpass filter. An ARMA-process of or-
der 3 is generated by white noise filtered through a Butter-
worth filter with bandwidth f = 0.1. The result of Figure 4
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Figure 4: The spectrum estimates of the different meth-
ods in Example 2. True Spectrum: Solid line, Spectrum
Estimates: Dotted lines.

indicates that the W-PolyMW method is outstanding when
the variance is approximately the same for all multiple win-
dow methods and it has a better ability to reduce leakage
in estimate in far-away low spectrum levels. However, it
should not be forgotten that if the spectrum has very large
dynamics, then the first window of the ThomMW method
is preferable as the sidelobe leakage is very small, -140 dB.
On the other hand, if the variance of the estimate is impor-
tant, and we use 8 windows, the total sidelobe leakage is
reduced to -30 dB for the Thom MW method. This is the
same as the leakage for the windows of the PolyMW and
W-PolyMW methods. The reason for the good estimates
in Example 2 is that the W-PolyMW method has its first
sidelobe at -30 dB but the level of further away sidelobes
is lower. This is an advantage for estimation of a smoother
spectrum as the one in Example 2.

Example 3

In Figure 5, an ARMA-process of order 20 made from a
Butterworth filter with bandwidth f = 0.1 is shown. This
example shows that sharp flanks are difficult to track. The
resolution limits the ability. The conclusion is that the
PolyMW and W-PolyMW methods are able to estimate
sharp flanks with satisfactory result compared to the Thom-
MW method. However, again, if only the first window of
the ThomMW method is used, the result will show large
variance but an unbiased estimate for dynamics of up to
140 dB. The first windows of the PolyMW and W-PolyMW
methods do not have this ability.
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Figure 5: The spectrum estimates of the different meth-
ods in Example 3. True Spectrum: Solid line, Spectrum
Estimates: Dotted lines.

5. CALCULATION OF BIAS AND VARIANCE

The examples in section 4 shows that the multiple win-
dow methods are superior to the single window method.
However, the behaviour of the different multiple window
spectrum estimates are more or less the same. To see the
difference between the methods, the bias and variance could
be calculated with knowledge of the true spectrum. Bias is

defined as
EIS(1)] - S(1) o
5(f)
where the expected value of the spectrum estimate is cal-
culated as

Bias =

K
B8N = = > NaT 27 (HRE(Na.  (10)

=1

The orthogonality of the windows is not useful in the calcu-
lation of the variance as the process for which we estimate
the spectrum is not white. The variance is then calculated
as

Fr Y0, 2 cov(Si(N)Si(f)
52(F)

Variance = (11)

where

cov($i(f)5;(£)) =APAT  (lal 27 (HRB(f)q,1* (12)

+laf 2(/)RE(f)q;,[*)
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Figure 6: Theoretical bias and variance for Example 1.

according to Walden et al, [3]. The bias and variance cal-
culated from these formulas are shown for the three process
examples in section 4.

Example 1

The ThomMW spectrum estimates of the second order AR-
process show the characteristic bias that broadens the peak,
Figure 6. The PolyMW and W-PolyMW method have re-
duced the bias but still the single window method has as
expected the lowest bias. However, the variance of the sin-
gle window method is about 8 times larger than the multiple
window methods. It can be seen that around the peak the
PolyMW and W-PolyMW has smaller variation compared
to the ThomMW method. Still the variance for the W-
PolyMW method are comparable to the ThomMW method
in the smooth spectrum region, £>0.2.

Example 2

For the third order Butterworth lowpass spectrum, the bias
shows a breakdown behaviour at different frequencies, Fig-
ure 7. For the different methods the breakdown is around
f=0.2, {=0.3 and f=0.4 for the PolyMW, ThomMW and
W-PolyMW methods respectively. However, the variance
shows results which are better than for the single window.
The robustness of the PolyMW and W-PolyMW method
are shown, since the variances are about the same size as
the ThomMW method for £<0.1. This indicates that it is
not that sensitive if one uses a method designed for peak
estimation when the spectrum is smooth.

Example 3

For the 20th order Butterworth lowpass spectrum we take
a closer look at the passband, f<0.1. The bias is slightly
better for the ThomMW method than for the W-PolyMW
method and so is the variance, Figure 8. However, one
should remember that this is the spectrum type that the
ThomMW method is designed for. The bias from the single
window (Hanning) is better due to the better resolution and
the variance is as expected about 8 times larger than the
Multiple Window methods.
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Figure 7: Theoretical bias and variance for Example 2.
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Figure 8: Theoretical bias and variance for Example 3.

6. CONCLUSIONS

This paper presents a non-parametric way of estimating the
power spectrum with the use of Multiple Windows. These
Multiple Windows ate found as eigenvectors of the correla-
tion matrix which have a bandlimited low-frequency dom-
inant spectrum. The spectrum has a similar shape to the
peaked spectrum of the stochastic process to be estimated.
Having this a priori information, the eigenvectors can be
better adapted to the signal. As these eigenvectors can
have large sidelobes a penalty function is used to reduce
the leakage from other frequencies.

The result shows that the proposed method (W-PolyMW)
has smaller bias and variance than the Thomson Multiple
Window method (ThomMW) for a peaked spectrum and
still has robust behaviour for a smooth spectrum.
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