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ABSTRACT

Parameter estimation for multiplicative noisy data is a
pertinent signal processing problem encountered in a
wide range of  signalling and data-processing
applications, including radar, sonar, radio astronomy,
seismology and vibroacoustics. The assumption of
additive noise is, in these contexts, insufficient for
adequate signal modeling. The model considered here
incorporates the gaussian amplitude-modulated
sinusoids. New algorithms are developed for frequency
estimation. The corresponding probability density,
prediction, innovation process and ergodicity property
are presented. Higher order statistics are used,
especially when the process is also contaminated by an
additive noise.

I- INTRODUCTION

Statistically, the multiplication of two random
processes is a nonlinear operation. The problem of
describing the resulting process is one of great
complexity and no systematic theory comparable to that
for linear transformation is available. In this paper, we
suppose that the sinusoid's amplitude fluctuation is
regular enough to be represented as a gaussian ARMA
process. The resulting spectrum is a convolution of the
ARMA spectrum and the two dirac measures
concentrated at the frequencies sinusoids. Using this
property, which is important only when the
autoregressive order is greater or equal to one, [1]
estimates the Doppler signal frequency. This paper
deals with identification and parameter estimation for a
general class of signals, called ARMACOS processes,
which can be written as:

ut) =3 y(d)cos(@t +¢,) +v(t) =x(t) +v({),
i=1
where ¢,'s are independent random variables uniformly
distributed over [0,27], v(f) is a colored gaussian
additive noise and the processes y; (), i=1,...,m, are

assumed to be independent, stationary and gaussian
ARMA(p,,q;) i.e.

P . g .
O +3 6 yt—k) = e®) +3 diet—k), with
k=1 k=1

{e() }i=1.m being independent zero-mean white
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gaussian processes with variance o?. The processes

H

and the random variables defined in the model are
assumed to be independent.

II- SPECTRAL DENSITY OF x(?)

Since the ¢;'s are uniformly distributed over [0, 27},

then x(f) is zero-mean stationary with a covariance
function:

R(7) = YR, (7) = 3 T R, (7) cos(w;7),

i=1 i=l
where x,(1) = y;(f)cos(w;t +¢,). The power spectral
density (PSD) of each component x,(¢) is:

S, @)= %[Syi (2¢") + 8, (z7721)]

_ 02| G(ze’™)F(ze ") + G(ze " F (ze'")
4 E(ze’")F(ze ) ’
where G;(z) = D, (z)z),‘(%) and F(z) = c,.(z)q*(z—l.).
If z, is a zero of the numerator, then - is also a zero
k
of this numerator. The PSD of x,(t) is then given by:
22 B(z) B'(Z
5, @)= 2 295G
! 4,(2) 4 (Z_)
Where  A,(z)=Ci(z¢’*)C/(ze™/®), B(z) is a
polynomial of degree p, +4;, and}.f is a constant.
We now derive the PSD of x(¢) ,
m A2 B(z) B'(L)
S@)=y - Z
5 4@ 4
SEBoBD T A@ 4]
i=1 k=t,..m
ki

I 4@ 4G
k=l m
B(z) B (L)
which can be written as: S,.(z) = £ ——%—,
A(z) A (—21;)

where A(z) is a polynomial of degree P = Zi D
i=1
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defined by A(z) = T1A4,(2), B(z) is a polynomial of
=l

> P}

k=L k=i

ITI- Probability density, prediction and innovation.

degree O=max {p, +¢; +2

In the following, our study is limited to a 'single(m=1)
ARMACOS process x(f) = y(t) cos(w,t +¢), where
y(t) is a zero-mean gaussian ARMA process with
parameters (g,gi_,oz). Thus, x(¢t) is a wide sense
ARMA(2p, p+q) process. Let us derive the probability
density of the ARMACOS process. A zero-mean

gaussian process is completely defined by its
covariance function; hence, the a posteriori probability

density of X = (x,....,xp)' is given by:

SX1#) = @mF deRy ™ exp {1 (XRI0 |
where R, is the conditional covariance matrix which
is nonsingular with probability 1. Its elements are
given by R, (i - j)cos(wi + p)cos(ay + #) for
i,j=1,..,T. The a priori distribution is obtained by
averaging, and can be written as:

2z
J(X) = - | (X |p)dé
0
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=202y | detR, 1 exp -4 (X'RlX) fdg
V]

A linear transformation of X ; S = KX + M, can never
be gaussian because its probability density is given by:
f(8)=

2204 | det (KRyK) oxp (5 MY (KR, K'Y'(5 - M) g
L1}

where K is a matrix (k,7) and M is a vector (k,1).
Since the spectrum of x(f) is rational, then for any
irreducible Fejer-Riesz representation of the spectrum,
there exists a zero mean white noise &(f) with variance
A% which is related to the signal x(¢) by the ARMA
relation:

x(t) + f: a, x(t-k)
k=1

The white noise associated with the minimal ARMA
representation (i.e. the B(z) roots are also inside the
unit circle) is the innovation process. Thus, we
establish a bijection between the covariance function of

x(t) and the triple (4, a, b). We use the recursive
method based on the innovation algorithm (see [3]) for
computing the best linear predictor £(r) of the ARMA

process x(f) and its normalized mean square error
r(t). When T is large enough, x(f) can be passed
through the inverse filter “){ . for parameter

Q
&0 + 3 b, e(t-k).
k=1
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estimation. We note that &£(¢) is not a strict white
noise, i.e. not an independent sequence.

IV- Cumulants estimation and ergodicity

In what follows, we will use the moments M(.) and
cumulants C(.) of order two and four. From a sample

(uy,...,ur)" , We estimate these as follow:
for r20and 7,27, 27,20,

Co(@y=R,(1) =

S w4 o),
t=1

N T-14
My (7,7,5,75) = " 2 u(u(t + 7)ut + T )ut + 13),
— 73 ¢l

é4u(71’72:73) = M‘tu(flﬂz: 73)—&(71)&(72 - 13)
~ R (e)DR(1) ~ 1)~ Ry ()R (7, ~ 73)
For the ARMACOS process {x,}, we have:
1

T
x=?t§x, —= 0,

R.(7)
Cax(71,72,73) T5a Cax(71,72,73),

with probability 1.
Proof (see appendix)

15w > R,

V- ARMACOS PARAMETER ESTIMATION
(pz2))
For order estimation, methods based on the covariance
matrix singularity, such as the corner method ([2]), can
be used. Even if X is non gaussian, the analytical
expression of its joint distribution is given. Thus, the
maximum likelihood estimator of @, is the one that
maximizes f(X). However, this method has two
drawbacks; first, it needs a numerical integration at
each step in the maximization procedure; second, it can
be numerically unstable due to the matrix inversion.
And even if f(X |¢) can be expressed without matrix

inversion by using the two parameter vectors ¢ and d ,
the numerical instability subsists. Thus, the ARMA
representation of the ARMACOS process makes
parameter estimation possible. It is to be noted that
there is no bijection between the ARMACOS process
and its spectral density, i.e. several ARMACOS have
the same covariance function. Therefore, for the
identification of each pair of poles
(pk ei(/l,ﬂvo) . Py ei(—}.,+m0) ) , where

P € k=1 p are C(z) roots, we should have
some a priori knowledge process. For example,
ambiguity vanishes if we assume that @, <% and



A, <@, . In the following, we suppose that there is no
ambiguity identification. In the ARCOS case, for
Doppler frequency estimation, [1] uses the centroid of
the estimated AR frequencies. Since there is not only
spectral equivalence between ARMACOS and a special
ARMA, as mentioned in {1], but also a temporal
equivalence, an intuitive estimation procedure is to
minimize the weighted sum of the squares:

T
S(a)o,‘_",d) = Z (xt
t=1

with respect to @, , C and d,. The algorithm, which
will be referred to as the "least squares” estimator is :

242
-x) Iry

Algorithm 1 :
1) initialization:
* @ js the Solution of the modified Yule-
Walker (MYW) equations.
* o\ is the centroid of 4°(z) frequencies,
¢ is such that C9(ze'®”) CO(ze %) = 40)(z)
d( )

2) minimization :

is a random vector.

(aA)O’éi) =arg IninS(“’g)E»é) .
In step 2, a priori knowledge about ARMA parameters
is used. It is interesting to note that, after initialization,
minimization is very quick, especially in the ARCOS
case because step one give a good initialization for both
a and b_ . In this case, Figure 1 represents the mean
square errors (m.s.e.), based on 1000 realizations, of
the frequency estimation (f, = w,/2x) as a function of
the number of samples, for both our algorithm and the
one proposed in [1], which is based on least squares
modified Yule-Walker equations (LSMYW) and the
centroid idea. in the latter, the number of correlation
points M was set to 100.

B
50 - R —
True model: C(2)=1-145z" +1.8l2
D(z)=1;f, = 0.23.
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VI- ADDITIVE NOISY CASE
(pz))

When Xx(f) is embedded in an additive colored
gaussian noise W(¥), the diagonal slice of the fourth-
order cumulant is used :
C4u(T) = C4u(T’ T: T)

=C, (7,7,7)+C, (7,7,7)

= C,e(1,7,7) = 2R (DR ().
In order to estimate w,, the LSMYW method is
applied to @4u(f) ;

Algorithm 2 ;
- Estimate @ by solving the LSMYW equations:

Cup+d) Cupra~-D ... Cula-p+D)\[ & Culp+a+l)
Culpra+D)  Cup+) - Culg-p+D)|| @ | |Culpra+d)
ColM=-1)  Coy(M-2) CrM-2p) ) \&sp LA %))

- Find the A(z) frequencies &, .

5) -

=1
= ”E
VII- MACOS case(p=0)

In this case, the covariance function has a cut-off after
lag q. Therefore any frequency estimation based on the
covariance function is uscless, especially when ¢=0.
We use the following cumulant;

Cp(0,7,7) = L R2(0)cos2my7) + L R2(7) .

Thus, for our MACOS process,
C,,(0,7,7) = %Ryz (0)cos(2w,7), forr>q. -
Therefore, if @, <% , then it can be estimated using

any technique of frequency estimation in -additive
noise. We can also estimate the frequency by using the

fast Fourier transform of the process {s}= {x,z} In
fact,

= — 1 L ~Jjat
Sr(@) —72-‘: €
=1

__Z 2 —_/mt

17, .
cos(a t +2¢4) e /?!
TE TEY{ (20, #)

RZ(O)) (e—-Jml+ ej((Zm —o;)HZ))_'_ - 2w, +m)t+2¢))

=_Z(Y1

+Ry(0)2 Z(e-lﬂ" +.Lej((2w -o)i+24) +.1_e I((ZN,*U)IHO))
T .2



The first term converges to 0 with probability 1 as
T — o (see appendix of the ergodicity propeny) And

if o #0, £2w, then, The second term is 0( ) Thus,
5(@)—5> TR0 [5(@) + 180 -20,) + 1 8@ +20,)]

Towx
with probability 1. This result holds for all
ARMACOS processes. The method is simple to
implement and it is computationally cheap thanks to
the fast Fourier algorithm. We can also estimate the
mean of § and get rid of the peak at zero in the
spectrum. The following figure illustrates this result
when y, is a zero mean gaussian white noise with unit

variance:
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VIII- CONCLUSIONS

‘In this paper, an important case of multiplicative
processes have been examined. The ARMA
representation of the ARMACOS processes allows
frequency estimation if the autoregressive order is finite
and not zero. When the ARMACOS processes are
contaminated by a gaussian additive noise, or the
autoregressive order is zero, higher order statistics are
used.

Appendix
1- Ergodicity of the mean:

For the stationary ARMACOS process X;, R, (0) <

and R (1) —> 0 as |q—> oo, then X, is mean ergodic.
2- Correlation ergodicity:
let {z,}be strictly stationary with zero mean, and its

spectral  distribution function with no jump at
@ (-7 < o < ). It may be shown that the quantity:

= 1z itw
ZT(W)=?Z zte ’
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converges to zero with probability 1, according to the
ergodic theorem and the fact that z.(w) converges in

mean square to a limit which is 0 with probability 1. A
completely analogous result is obtained, for a fixed ¢ ,

for the quantity :

F Zzt cos(ax +g) = c°5(¢) er cos(ax)— sm(¢) Zzt sin(ax)

Wthh is independent of ¢ as T oo, Then, the

unconditional convergence properties are the same as
those of the conditional ones.
For a fixed 7, Let

{z,} = {}’tY:+r - Ry(r)} , then:

A T-r

R(n)= T . T Zylyt+f cos(@t + ¢)COS(a)a(t +7)+ ¢)
“t =l

the stationary process

_cos(w,7) 1 Tr
=T Ejl YVrer + 2(T )E‘,z, cos(w, (2t + 7) +24)
(r) %
Z(RT’— )Zcos(a)o(2t+r)+2¢)

The process z, verifies the conditions of the previous

property. Thus, in the right hand term, the second
element converges to 0 with probability 1 and the third

one is 0(%). Hence, since y, is ergodic, ﬁx(r)
converges to R, (7) with probability 1as 7 — .

3- Fourth order cumulant ergodicity:

We apply the same  method the
process {y,ym,ymzym, —M(rl,fz,fs)}- Thus, the

moments and cumulants are the limits, with probability
1 as T — oo, of their estimates.
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