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ABSTRACT

Most methods estimating noisy sinusoidal signals as-
sume the noise to be white, and fail when they are
used on real signals with colored noise. In this pa-
per, we propose two new recursive algorithms, deduced
from a recent work of Kay and Nagesha, for the esti-
mation of sinusoidal signals embedded in an AR noise.
The first one is a A-RLS, whereas the second one uses
Kalman Filtering. Their convergence speed, computa-
tional burden and statistical characteristics are com-
pared and the advantages brought by these estimators
for real signals are shown.

1. INTRODUCTION

The parameter estimation of sinusoidal signals from
noisy data still receives a great attention. Many es-
timators have been proposed, among which the most
studied and used are certainly the Prony, Pisarenko,
MUSIC and minimum norm methods [1, 2]. They are
asymptotically efficient and have excellent performances,
but they assume that the additive noise is white. Un-
fortunatly, this hypothesis cannot be satisfied in some
real applications, such as voltage and current measure
of power supplies. For such cases, the method of the
constrained maximum likelihood [3] or methods based
on the fourth order cumulants [4, 5] solve the estima-
tion problem of amplitudes and frequencies from data
blurried with colored noise of unknown power spectral
density. But since these estimators assume that the
observed signals are wide sense stationary, they are un-
suitable to track the slow variations of non-stationary
signals. Furthermore, they need a large computational
burden and they cannot be used for real time applica-
tions. On the other hand, the major work of Kay and
Nagesha [6] yields an elegant maximum likelihood esti-
mator (MLE) of the parameters of both the sinusoids
and the AR noise. But this estimator requires compu-
tationally expensive matrix inversions and cannot track
slowly-varying parameters. To avoid these drawbacks,
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we propose in this paper a recursive implementation
of the MLE, and an algorithm based on the extended
Kalman filter (EKF) approach.

After a brief introduction showing more precisely
the motivation and the background of our work, section
2 presents the signal model and the new algorithms. In
section 3, statistical characteristics, convergence speed
and computational burden of these algorithms are com-
pared. Finally, some conclusions are drawn which high-
light the advantages of these algorithms for real signals.

2. SIGNAL MODELISATION AND
ALGORITHMS

2.1. Signal modelisation

Many observed physical phenomenons lead to station-
ary signals which are composed of sinusoidal compo-
nents embedded in an additive colored noise. When

_this noise is derived from a stable AR, process of finite

order, such signals write :

M
S Bt wpl; n=0,--+, N —1(1)

yn] =
k=0
14
whl = — Y awnl] + uln] (2)
=1
By = |Bife®; k=0, M 3

where |Bi|, ¢x, 0r and a; are unknown and consid-
ered as deterministic, whereas the number of sinusoidal
components and the AR model order p are assumed to
be known. Thanks to a linear transformation of the
parameters, (1) can also be written as :

P M

Yl = — Yy ayind— Y e +uml (4)
I=1 k=0

with g = =B (1+ X0 ae™)  (5)
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2.2. A—RLS algorithm

This non-linear transformation (5) is the key point of
the MLE proposed by Kay and Nagesha [6]. Then,
when the frequencies are assumed to be known, the
equation (1) is linear related to the unknown param-
eters and a A-RLS can be used to estimate the am-
plitudes and the AR coefficients. Therefore, when n
data are available, the usual quadratic criterion of the
A—RLS writes [7):  ,

J(ul,ai)) = DA TFpw? 0<A<1(6)
k=p

= V7 AmVl (7
Vin] = Yin)— Hinlaln] — Efn] pin]
Aln] = diag(A"P, APl 1)
LU[I’I]]m = I-‘m—l["]; m = 11;M+1
Y], = wpte, k=1,---,n—p+1
Vil = vpt+k1)
[a[“]]l = ajn], l= 1,"';1’
[Eollyn = €@
and the resulting parameter estimator is given by :
[ Zill ] = —Ppi(Hp | Ewl” Al V1o (8)
-1
P = ([Hel | Bl Aw (Hel | Ell) (9)

where jiz and @; denote respectively the estimated val-
ues of yi and a;.

The use of the forgetting factor A is intended to en-
sure that the data in the far past are forgotten, to offer
the tracking ability. With X close to one, the algorithm
has a large memory time constant. Therefore, the pa-
rameter estimation is accurate but the time variations
of parameters are slowly followed. On the other hand,
if X is small, the A-RLS is alert to follow the changes
of parameters, but the estimates of a and p are not
very accurate. Thus, a trade-off between the conver-
gence speed and the insensitivity to the noise should
be found [7].

For computational efficiency and for real time ap-
plications, we are interested in estimating the unknown
parameters recursively. Thus, thanks to the matrix in-
version lemma [8], the A—RLS method can be recur-
sively implemented :

aln a[n-1 hn
(0] = (i) -na 2 e o
€] = ylnl + Aal? din1) + em) pine1) (11)
b = [yin1l, -, yin-1-pl] (12)
e = emuf T (13)
T = diag(ef%, - /%) (14)

H
hin] hin}
Pay L [“'”[ el ] [ €] ] Pl
A h H
(n] hin}
AfA Ppn-
( +[e[n]] : l}[e[n] ])
Theorically, P}, fi[n} and a[n] should be initialized
with (8) and (9) when M + 1+ 2p data are avail-
able. But, with such an initialization, we must wait

the M +1+2p data and inverse an almost sure invert-
ible matrix. An alternative is to use :

Pin)

ﬁ[P] =0 C[p]H = [ejpoﬂ, e ejPOM]
ap] = 0 el = [ylp—1],---, (0]
P = IM+1+p

which leads to a suboptimal algorithm. However, the
initialization will be as rapidely forgotten as A is small.
Thus, A has a great influence on both the transient be-
havior and the tracking ability. Both phases can be in-
dependently controlled and a faster convergence speed
can be reached when the constant A is substituted by
one growing exponentially with time, such as {7] :

0<a<l
0< A <1

Aln] aAn1]+ (1 — o) Ao

= o™ P Apl+(1— 0" 7") Ao

I

The parameter o mainly influences the convergence
speed whereas Ao controls the trade-off between alert-
ness to follow the time-variations of a[n] and p(n} and
the insensitivity to the noise. Moreover, the use of
a time-varying forgetting factor does not increase the
computational complexity : the constant factor A is
substituted by A[n] in the recursive equation (10).

2.3. EKF algorithm

This A—RLS estimator assumes that the frequencies
are known. Unfortunatly, this assumption is not satis-
fied by real signals : the frequencies may change slowly
over time. For this, the transformation (5) can be used
to derive a Kalman filter estimator [7], presented here
for periodic signals whose frequencies are all multiple
of a fundamental one 6. '

Expression (1) can be interpreted as a non-linear
state model :

Zin] = AZp1) (15)
yn] = C(Zn]) + uln) (16)

P M )
C(Zm) = - ayln—10-3 e (17)

=1 k=0

ZTm = [@@), O, als], A (18)
] = (n—p)d; fu = pre P (19)
[A;; = 1if(i=j) or (i=1;7=2) (20)
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The observed equation (16) is non-linear whereas

the transition equation (15) is linear and corresponds
to the time variations of the phase and to constant
parameters. Furthermore, if the observed signal is non-
stationary, then the time variations of parameters can
be modelized by a random walk :

Zin] = AZp1]+ W1 (21)
where Win-1] is a random variable with covariance Q :
Q=diag(oyo’gyazl,"',03,1050,"',U§M (22)

Unlike the A—RLS, the time variations of the param-
eters can be controlled independently. Unfortunatly,
this approach increases the computational burden.

Since the observation equation (16) is not a linear
function of the state ®[n], we have to develop a first
order Taylor expansion of (16), around the current es-
timate. Thus, according to the Kalman filtering theory
[7], we get :

Zn/n-1] A Z[n-1/n-1] n>p (23)
P/a-1] = AP@mam1)AT +Q (24)
Zin/n] = Zn/n-1]+ Kin] €ln/n-1} (25)
eln/n-1] = ylnl = C(Z[n/n-1}) (26)
K] = Ph/n116CHmEm!
T = 6CHn Pi/n116CH ] + o2
Pla/n] = Pla/n-1) = K[a) 6Cn] Pln/n-1]
6Cn) = —g—g- (Zin/n-1])

Because of the linearization and for an almost sure
convergence, the initial value of [p/p-1] shall not be too
far from the real one, otherwise the EKF may diverge.
On the other hand, the other parameters can be ini-
tialized with any value. We choose to set uf{p/p-1) = 0
and afp/p-1] = 0.

3. COMPARISON OF THE ALGORITHMS

To compare both algorithms, a Monte-Carlo study is
performed to investigate the statistical characteristics
and the convergence speed of our algorithms. For this,
we simulate a stationary periodic signal embedded in
a first order AR noise whose coefficient is set to 0.95
and the resulting SNR is 15 dB. The deterministic com-
ponent of this signal is made of a dc component, one
fundamental of normalized frequency set to 1/50 and
two harmonics. All amplitudes are constant and equal
to 1.

To study the statistical characteristics of both al-

A 2
gorithms, o%[n) = |B[n] - BI /M + 1 is computed at

each instant and statistics over one hundred indepen-
dent Monte-Carlo runs are estimated. Moreover, to
compare both algorithms, these ones are initialized with
the same value. Especially, in the EKF, the fundamen-
tal frequency parameter of the extended state is initial-
ized to the real value.

Figure 1 shows that the asymptotic performances
of parameter estimators based on a colored or a white
noise assumption are identical, as mentionned in [6, 9].
The EKF (with Q = 0) and the recursive MLE (A—-RLS
with A = 1) are asymptotically efficient : they reach
asymptotically the Cramer-Rao lower bound (CRB)
[10] given for a white noise assumption. This latter
is asymptotically equivalent to the Cramer-Rao lower
bound based on colored noise. The algorithms assum-
ing colored noise converge quicker than the other ones.

Finally, the A—RLS algorithm is applied on the cur-
rent distorted by a dimmer (figure 2) [10]. This real
signal sampled at 3 kHz is a one-phase current whose
fundamental frequency is 50 Hz and the study of the
periodogram leads us to keep the 15 first harmonics
to describe it. Figure 3 displays the square error be-
tween the real current and the estimated signal. We
conclude that the A—RLS algorithm based on colored
noise converges faster than one ignoring the correlation
of the noise. But the asymptotic behavior of both al-
gorithms is identical. Thus, the conclusions drawn by
simulations are confirmed.

From a computational point of view, the A-RLS re-
quires (M + p + 1)? multiplications and additions and
no matrix inversion. Thereby, the comptational burden
is proportional to (M + p + 1)% per data sample. We
have to compare favourably this result to the computa-
tional burden of the MLE (8) (9) which is proportional
to O[(p + M + 1)3] per time sample.

4. CONCLUSION

In this paper, we propose two new recursive algorithms
to estimate the parameters of sinucidal signals embed-
ded in an AR noise. In addition, white noise can also
be considered by setting p to zero. The asymptotical
performances of these estimators based on colored or
white noise are identical. Moreover, since the recursive
MLE (A—-RLS with A = 1) and the EKF (with @ = 0)
reach the Cramer-Rao lower bound (CRB), they are
asymptotically efficient. But the convergence speed of
both algorithms is quicker when the assumption of col-
ored noise is made.

Unlike the A—RLS algorithm, the MLE proposed by
Kay and Nagesha [6] is a multistage estimator. There-
fore, to reduce the computational complexity from Q[(p+
M + 1)?] to O[(M + 1)?] + O[p?], further works have
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already started to provide a recursive multistage esti-
mator.

Finally, our recent works show that the A—RLS is
rather sensitive to errors on the fundamental frequency.
Therefore, a further extension is to add to the A-RLS
algorithm a frequency estimator which can track slow
variations of frequencies.
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Fig.1 : o%(n] versus iterations. Solid line and x

(respectively x) : MLE with a AR noise assump-
tion (a white noise assumption); Dashdot line and
x : Suboptimal MLE with a AR noise assumption.
Dashed line and o (respectively +) : EKF with
with a AR noise assumption {a white noise assump-
tion); Dashdot line and + : A — RLS (A =0.95)

with a AR noise assumption; Solid line : CRB
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Fig.3 : Solid line : A — RLS (A = 0.95) with a AR
noise assumption (p = 2); Dashed line : A — RLS with
a white noise assumption.
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