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ABSTRACT

We consider the problem of detecting and classifying an un-
known number of multiple simultaneous Gaussian autore-
gressive (AR) signals with unknown variances given a finite
length observation of their sum and a dictionary of can-
didate AR models. We show that the problem reduces to
the maximum likelihood (ML) estimation of the variances
of the AR components for every subset from the dictio-
nary. The “best” subset of AR components is then found
by applying the minimum description length (MDL) prin-
ciple. The ML estimates of the variances are obtained by
combining the EM algorithm with the Rauch-Tung-Striebel
optimal smoother. The performance of the algorithm is il-
lustrated by numerical simulations. Possible improvements
of the method are discussed.

1. INTRODUCTION

It is well known that autoregressive (AR) models can rep-
resent a wide variety of signals, and they have been ex-
tensively researched [1]. However, in certain applications
multiple signals, each described by an AR model, may arise
simultaneously. To deal with such situations we define a
new model for simultaneous AR signals. A time series {y:}
is defined as a mixture of Gaussian AR processes (denoted
TAR) if {y:} is a sum of ¢ components {zi.} plus some
white noise {n.}, and the sequences {z; .} are generated by
uncorrelated Gaussian AR(p;) processes. That is,

‘C
Yy = in,z-l-ﬂ:, (1)
i=1

Zie =

Pi
- E Qi kTit—k + €it, (2)
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where {ei:} are Gaussian mutually uncorrelated innova-
tion sequences with respective variances pi, and {n.} is
a white Gaussian process with variance o2. Such a pro-
cess is represented by the system of Fig. 1, where A:(z) =
143 %  aixz"*. The sum of AR processes results in an
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Figure 1: A mixture of Gaussian AR processes.

ARMA(p, q) process with a particular structure, as it can
be seen by writing the power spectral density of {y.} as

_N__# 2 _ 2| B
Pyy(w) = 2—; IAi(ej“')P +on=0y IA(e,'w)lz ) (3)

with B(z) = 14500 Bez™ and A(2) =1+ 35 arz75,
pP=q=)_ Ppi

In this paper we consider the problem of detecting the
AR components that are present in a ZAR signal when a
set of candidate AR models is available. That is, we have a
dictionary of known component models Ai(z),i=1,..., M,
and we want to find the subset of c of these components that
are present in the observed signal {y:}. Typical examples of
applications of such tests would be in environmental sound
recognition [2] or in recognition and processing of speech in
noisy background [3] where multiple signal components well
represented by AR models may be observed simultaneously.
The problem is, in a stochastic sense, equivalent to a vector
quantization (VQ) problem where we could select multiple
codewords simultaneously from a known codebook to best
fit the signal.

2. PROBLEM FORMULATION

Let us assume that a dictionary Q of M candidate AR mod-
els is available:

Q= {A;(z):A.-(z) = 1+Zl:ag[k]z_k,i= 1,...,M}.
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We want to find the subset ¢ C §2 of ¢ elements from {2 that
are present in the signal y: based on the observation of a
realization y = [t -+ yn]T of {y:}. The number of AR
component ¢ is not known a priori.

A naive attempt to solve the problem would be to choose
the subset £ that maximizes the generalized likelihood func-

tion
L(y; §) = log max p(y; ¢, 6) (4)

where the vector parameter 8 = [p1 - pc 02]7 represents
the unknown variances of the ¢ AR components in £ and the
unknown noise variance ¢-. This attempt will fail because
the generalized log-likelihood L(y;¢) is a monotonically in-
creasing (or at least nondecreasing) function of c. It will
therefore reach its maximum at ¢ = M. To avoid select-
ing this trivial and uninteresting solution, it is necessary to
add a penalty term to (4). One form of penalized likelihood
based on information theoretic considerations is the min-
imum description length criterion (MDL) of Rissanen [4].
Under some mild assumptions on the variances p; and o2,
the MDL solution émpt is given by [5]

. 1
éMpL = arg min {—L(y, &)+ E(C + 1) log N} .

The optimum subset £xrp . is obtained by computing L(y; §)
for all possible subsets ¢ and then selecting the the maxi-
mizer of (5). From (4), we can see that the computation of
L(y; ) is equivalent to the estimation of § in the maximum
likelihood (ML) sense. In the next section, we will derive
the ML estimator of 4 for a given £. That is, we will as-
sume that ¢ and the AR parameters are known and we will
estimate the variances pi, ..., pc, T2

3. ESTIMATION OF VARIANCES

3.1. State-Space Model

The Y AR signal model defined by (1)-(2) can be reformu-
lated as a state-space model. Let F; be the (p;+1) x (p:+1)
augmented top-row companion matrix

—ai1 —Gi2 -+ —Gip, O
1 0 . 0

F; = 0 1 0 0 ,
0 0 1 0

and let x;,s and g; be the (p; +1) x 1 column vectors x;,; =
[zie zi—1 - i t_p,]T andgi =[10 --- 0]7. The AR(p,)
process {zi:} of (2) is alternately deﬁned by the vector
difference equation

Xi,e = FiXi -1 + gieie. (6)

We can collate the state equations (6) for i =1,...,c, and
introduce an observation equation for {y:} to obtain the
state-space model

x. = Fxi1+ Ge;, (7)
ye = hTx; + ne, (8)
where x¢ = [x], x7, - x;rt] ,ande; = [erce2: - - €ce]”-

The (p+¢) x (p + ¢) block diagonal matrix F is given by

F = block diag(F, ..., F.). The (p +¢) x ¢ matrix G and
the (p+c¢) x 1 column vector h are given respectlvely by
G = block diag(gi,...,8c), and h=[10 --. 0]7. The co-
variance matrix of the input vector e; is the ¢ x ¢ diagonal
matrix Q = Cov(e:) = diag(p1, ..., pe)-

3.2. EM Algorithm

The Expectation-Maximization (EM) algorithm presented
first by Dempster et al. [6] is a general iterative method
to compute ML estimates when the observed data can be
regarded as “incomplete” and the incomplete data set can
be related to some “complete” data set through a nonin-
vertible transformation. Let the vector of observations y
be the incomplete data set which has probability density

p(y;8). The ML estimate of § is obtained by maximizing

the log-likelihood function
Oy = arg max log p(y; 8). (9)

A natural choice for the complete data set X is the set
X = {x1,...,%xn~,n1,...,nn}. The non-invertible transfor-
mation relating the complete data set and the incomplete
data set is simply the observation equation (8). The two
stages of the EM algorithm can be stated as follows. Let
6 denote an arbitrary initial guess for 8 obtained, for
example, by the method of moments method described in
section 3.3, and let 8™ denote the current estimate of 6
after k iterations of the algorithm. Then, the next iteration
cycle is given by
E step: compute
U(8,6®) = Egu {logp(X;6) | v}, (10)

M step:
6+ = arg mgxxU(G,G(k)). (11)

First, consider the evaluation of U(6,6®) for the E-
step. The log-likelihood function log p(X; #) is equal to

log p(X; 6)

zc:]ogp(x.'vl,...
=1
i: log plen,---
1=1

,Xi,n) +logp(ni, ..., nN)

Lei, N 1% 1 )p(xi1)

+log p(n1,...,nN)

Using the Gaussian assumption. we find, after some alge-
braic manipulations {5},

log p(X;0) = [——(N+p- ) log pi
N
~om ( (Z Xi X t) a; + trace{FTIXg,lx;,1}>]
N N
—— log a2 — Z - 2y:th, + th,x;rh)

+K, (12)
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where K is a constant independent of 8, a; is the vector of
AR parameters a; = [l ai3 - aip,])7, and T is the nor-
malized covariance matrix I'; = p; ' Cov(xi,1). Since the
elements of the vector Xi: = [%i¢ -+ Zit—p;] are consec-
utive samples from a stationary AR process, I'; is a sym-
metric Toeplitz matrix whose elements are the first p; +1
autocorrelations of {z;:} (see sec. 3.3 below). Alternately,
the inverse I';' can be obtained directly from the AR pa-
rameters by the Godberg-Semencul formula [1, p. 166]. We
then define the smoothed conditional means

xgrj)v = Eyum{x|y}, (13)
x“?m = Eym{xisly} (14)

!

and the smoothed conditional covariance matrices
ngz)\r Cov ey (Xely), (15)
Py = Covep(xixly). (16)

Note that )"cfkt)l , can be extracted from fcgff)‘,, and PE:?I W I8

a block diagonal submatrix of PET}, Combining (10) with
(12) and (13)-(16), we obtain

c

Ue,0®)=>" {—;}(N + pi) log pi

i=1

N
! T 2(F) (o(R) \T (k) .
T 2p (a,- (Z (xi,th(xg‘,ﬂN) +Pan) &

t=2

+trace {I‘,-_l (fcfi)m (iSZ)W)T + P.(‘i)IN) }) }

N 1 -
2 2 T~ (k)
~ g losoh— gz > (o - 2w R

t=
+ BT (R &7 + P ) h) + K. (17)

The smoothed conditional means (13) and smoothed con-
ditional covariances matrices (15) can be computed by the
Kalman filter in its Rauch-Tung-Striebel optimal smoother
“version [7]. Table 1, where the index ()®® has been omit-
ted for brevity, summarizes the smoothing algorithm. The
values of pi,...,pe, and o2 used in the algorithm are the
current estimates at step k of the EM algorithm.

The maximization of (17) during the M-step is trivial.
Setting the partial derivatives of U (8,8®) with respect to
p1,-.., pe, and a2 to zero yields the new estimate glE+1)

We conclude this section by noting that Ziskand and
Hertz [8] proposed a conceptually similar approach to the
maximum likelihood estimation of the parameters of multi-
ple AR signals in a frequency estimation problem.

3.3. Method of Moments

The EM algorithm presented above requires an initial guess
6, This initial value can be obtained by the method of
moments (MoM). The method of moments estimate Imom
is obtained by equating (¢ + 1) theoretical moments of the

Set )AC1|0 = 0,
Set Pyjo = block diag(p1T'1,- .., pcTc)
Fort=1to N do
K, = P,|,_1h(hTPt|,_1h + 0‘,2.),)—1
Repe = Kepe—1 + Ke(ye — hTitlt—l)
Pt|t = Pt|t—1 - KthTPt|t-—1
iH—lIt = Fit[t
Py = FPtltFT + GQGT
Fort =N to1ldo
Ar= PtItFTP;lm
ey = Kepe + Ae(Xegr |y — FXy)
Pyv =Pyt + Ae(Peyynv — Pt+1|t)AtT

Table 1: Rauch-Tung-Striebel optimal smoother.

process, which are a function of §, to (c+1) sample moments
computed from the data, and solving the resulting system
of equations for 8. Since we are considering zero-mean
Gaussian processes, the moments of interest are the covari-
ances. Let {rx} be the covariance sequence of {y:} and
let {rix} be the covariance sequence of {z;:} normalized
by p: (i.e., the autocorrelation sequence): rx = E{yty:—k},
and rix = E{zi:zi:—x}/pi. The autocorrelation sequence
{rix} of an AR process can be computed from the AR
parameters {ai1,...,aip;} of the process [1, pp. 44-45).
The covariance sequence of the white noise sequence {n:}
is given by rnx = 0%k, where §x is Kronecker’s delta func-
tion. Because the processes {zi:} and {n:} are mutually
uncorrelated, their covariances add up, and we have

'k = pirik + ..+ pere + Tabk. (18)

The unbiased sample covariances 7 are defined by

N-k
. . 1
Tk =r_k = N —& ; Yk+tYe. (19)

The MoM estimate is obtained by replacing rx by fx in
(18) for k = 1,...,c+1, and solving the resulting system of
linear equations for p1,..., pc, and o2 . The MoM estimator
for our problem can be shown to be unbiased and consistent

[5].
4. PRELIMINARY RESULTS

To verify the proposed algorithm and test its performance,
we conducted several Monte-Carlo experiments with simu-
lated data. Here we present the results obtained for mix-
tures of two AR(2) components chosen from the dictionary
of six AR models described in Table 2. They represent a
combination of low-pass, high-pass, band-pass, and band-
cut broadband processes.

In the first experiment, we generated 25 different re-
alizations of length N = 512 of a TAR process for each
of the (g = 15 possible subsets of two components out
of the dictionary. The innovation sequences for both AR
processes had unit variance p; = p» = 1. The noise vari-
ance o2 was set equal to 0.01, which corresponds roughly
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Table 2: AR(2) models parameter dictionary

1 1 2 3 4 5 6
ai,1 1.5588 | 0.9000 | 0.0000 [ -0.9000 | -1.5588 | 0.0000
a2 | 0.8100 [ 0.8100 | 0.8100 0.8100 0.8100 | 0.8100

to a SNR of 30 dB. We computed the value of the MDL
criterion for all possible subsets of one, two, or three AR
processes. There are thus (?) + (g) + (g) = 41 hypothe-
ses for the subsets of AR components that are compared.
A subset of two elements was selected 269 times out of
15 x 25 = 375. The two element subset selected was the
correct subset 260 times. When a subset of three compo-
nents was selected, it always contained the two correct AR
models plus a spurious one. Subsets of one elements were
never selected. The ZAR processes most difficult to iden-
tify were the ones composed of the pair of AR processes
{1,4}, {2,5}, {2,6}, or {4,6} for which the error rate was
close to 60%. The AR processes composed of the pair of
AR processes {1,5}, {2,4}, or {3,6} were the most easily
identified with an average error rate of 4%. It is possible
to interpret this results in term of the spectral separation
of the different AR models. Subset hypotheses that have
“close” spectra are difficult to identify. Conversely, subset
hypothesis that are well separated in the spectral domain
are easier to identify [5].

The iterative EM algorithm with the Rauch-Tung-Strie-
bel smoother run at each iteration is computationaly inten-
sive. One way to reduce the computational load is to stop
the EM algorithm after an arbitrary number of iterations
kmax, before complete convergence. If the initial value ob-
tained by the method of moments is close enough to the
maximizer, the variance estimate §t*max) when the EM al-
gorithm is stopped can be viewed as an approximate max-
imum likelihood estimate. Using this estimate in (5) will
therefore give an approximate MDL criterion which can be
used to select the desired subset. To verify this hypothesis,
we conducted a second experiment to analyze the effect of
the number of iterations of the EM algorithm on the clas-
sification error rate. The dictionary and parameters values
were the same as in the first experiment. With only one
iteration of the EM algorithm, a subset of two element was
selected 256 times, and this subset was the correct subset
247 times. With no iteration at all, that is, by using directly
the MoM estimate in (4), a subset of two elements was se-
lected 247 times, and this subset was the correct subset 246
times. The ZAR mixture leading to the highest and lowest
error rates were the same as in the first experiment.

Other results with different dictionaries will be shown
at the conference.

5. SUMMARY AND CONCLUDING REMARKS

In this paper we have considered the problem of detecting
and classifying an unknown number of multiple simultane-
ous Gaussian AR signals with unknown variances given a
finite length observation of their sum and a dictionary of
candidate AR models. We have shown that the problem
reduces to the estimation in the maximum likelihood sense
of the variances of the AR components for every subset of

AR models from the dictionary. The “best” subset is then
found by applying the minimum description length princi-
ple. The ML estimator of the variances has been derived by
combining the EM algorithm with the Rauch-Tung-Striebel
optimal smoother. Another estimator based on the method
of moments has also been proposed.

The selection of the optimal subset of components from
the dictionary requires the evaluation of the MDL criterion
for every possible combination of components. To avoid the
combinatorial explosion associated with large dictionaries,
it is necessary to resort to sub-optimal search strategies.
This is similar to the issue of feature subset selection in
pattern recognition [9], and the numerous algorithms that
have been developed to address that problem can be ap-
plied. The search can be further accelerated by performing
a first selection of possible subsets with only a few itera-
tions of the EM algorithm. The results of this coarse search
through the dictionary with an approximate MDL criterion
can then be refined with a fully iterated EM algorithm to
retain only the “best” subset.

In our formulation of the mixture decomposition prob-
lem, we have made the hypothesis that a dictionary of fired
parameters for the candidate AR models is available. The
algorithms proposed here can be extended to treat the prob-
lem in a Bayesian framework. That is, the dictionary of
fixed parameters can be replaced by a dictionary of a pri-
ori distributions for the parameters of the candidate AR
models [5].
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