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ABSTRACT

A simple method is proposed for blind identification of
discrete-time nonlinear models consisting of two Linear Time
Invariant (LTI) subsystems separated by a polynomial-type
Zero Memory Nonlinearity (ZMNL) of order N (the LTI-
ZMNL-LTI model). When the input to the model is a
circularly symmetric Gaussian sequence, the linear subsys-
tem of the model can be identified efficiently using slices
of the N + 1** order polyspectrum of the output signal,
even when the second linear subsystem is of Non-Minimum
-Phase (NMP). The ZMNL coefficients need not be known.
The order N of the nonlinearity can, in principle, be esti-
mated from the received signal. The methods possess noise
suppression characteristics. Computer simulations support
the theory.

1. INTRODUCTION

Linear channel models, because of their simplicity, have tra-
ditionally been used in a large number of practical appli-
cations and a variety of methods have been suggested for
identification of such models [1]. However, most practical
circuits and channels are better approximated by nonlinear
models. Examples include hard-clippers, rectifiers, enve-
lope detectors, data generation and other communication
circuits, the magnetic recording channel, telephone chan-
nels operating at high data rates, digital microwave and
satellite communication links with High Power Amplifier
(HPA) nonlinearities [2], among others. In several of these
applications, the input signal (or a training sequence) is un-
available, and it is desirable that identification of the non-
linear channel be based only on the received sequence and
known statistics of the input (Blind Identification). Tradi-
tional methods based on cross-correlation of the input and
the output are clearly inapplicable here.

Though the ability of polyspectra to extract nonlinearly
phase coupled components has been exploited for detection
of nonlinearities [1], blind identification of nonlinear chan-
nels has remained an intractable problem, except for a re-
stricted range of inputs, primarily Gaussian [3]. Alshebeili
and Venetsanopoulos [4] showed that a quadratic Volterra
model with Gaussian input can be identified by cumulant
matching {4].

The LTI-ZMNL-LTI model finds wide application in char-
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acterization of distortion in complex envelopes of signals in
communication channels and circuits with HPA nonlinear-
ities. It is this model that is of primary interest in this
paper. It was shown by Rozario and Papoulis [3] that such
models with minimum phase linear subsystems can in prin-
ciple be identified with Gaussian input when the ZMNL is
a monotonic function. The method is based on the obser-
vation that since the input to the ZMNL is Gaussian, its
output possesses a Polyspectrum that is real. Identification
of the first linear subsystem involves comparing the Prob-
ability Density Functions (PDF) of the ZMNL input and
output. Besides being tedious, the method places strong
restrictions on the model.

In this paper, we discuss a method for blind identification of
linear subsystems of a discrete-time LTI-ZMNL-LTT model.
The linear subsystems are allowed to be of NMP, and the
N*» order polynomial ZMNL is not necessarily monotonic.
However, the first linear subsystem of the model can be
completely identified only if it is of minimum phase. Only
slices of the N + 1** order moment-based polyspectrum of
the output are required for identification. The ZMNL coef-
ficients are not estimated and need not be known. In theory,
the methods suppress the effect of noise.

These methods find application in analysis of distortion in
QAM type signals due to a HPA nonlinearity. The trans-
mitted data, however, is assumed to possess a Gaussian
PDF. It should be noted in this connection that of all the
nonuniform symbol PDFs, the Gaussian PDF is the optimal
(in the maximum entropy sense) [5] for several signal con-
stellations. For this reason, shaping data to have a Gaussian
PDF is an increasing trend in digital communications.

Problem assumptions are presented in section 2. Some blind
identification methods are proposed in section 3. In section
4, the results of computer simulations are presented to ver-
ify the theory.

2. PROBLEM FORMULATION

Consider the discrete-time LTI-ZMNL-LTI model in figure
1. The input sequence {z(k)} is a zero-mean, independent,
identically distributed (iid) complex process whose real and
imaginary parts are Gaussian with equal variance. The data
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is then circularly symmetric:

g(km)e  (km41) ... 2" (kmer)} #0
only when m =r (1)

E{:L‘(kl) SN

where the symbol * in the superscript denotes conjugation
and F is the expectation operator.

We start for the sake of generality with the moving average
Volterra model of order N. The output signal then is:

k) o= S > ymi) [ [ ok = mj)

+n(k) (2)

h;(mi,...

where k;(, ., ) is the i** dimensional Volterra kernel sequence
and n(k) is the additive noise. The LTI-ZMNL-LTI model
of figure 1 is a special case of the above with factorizable
kernels. If the input u(k) and output v(k) of the ZMNL
depicted in the figure are related by v(k) = Zfil Ciu'(k)
where {Ci,t = 1,2,..., N} are the complex ZMNL coef-
ficients (C; is assumed to be unity), then the kernels of
the LTI-ZMNL-LTI model can be factored in the frequency
domain as follows [6]:

ﬁi(zl)zzi""

zi) = C-’HHl(Zj)Hz(HZJ) (3)

where H,(z1, z2,..., 2:) is the '™ Volterra transfer function
and Hi(z) and H2(z) are the transfer functions of the two
linear subsystems. Identification of such LTI-ZMNL-LTI
models is of primary interest in this paper,though some re-
stricted Volterra models and LTI-ZMNL models are also
considered. The objective then is to estimate the impulse
responses hi(k) and hi(k) using only the statistics of the
output.

3. IDENTIFICATION METHOD

We rewrite equation 2 as:

N
> Hi(k) +n(k) (4)
where
Hi(k) A Z h(my,ma, ... m;) Hz k—mj)
Y ey M — 0O j=1

We define the j + 1°* order moment of r(k) as

RJ.;.I,T(ml,m;,...,mj) é E{HT(IC-}-m,)T‘(k)}

=1

It can be verified that because of the circularly symmetry
of the input, all moments of order greater than N + 1 are
zero. This fact can be used to estimate N. Also, the N4+1*

order moment depends only on the first and the Nt order
term in equation 4 and is given by:

N
Rusrr(ma,...,mn) = E{]] Hi(k + m, ) Hi(k)}
=1
N
=2V N [Hﬁ_l(zj +m;) | k(... IN)
oy Li=1
+RN+1,n(m1»--'1mN)

where 02 = E{|z(k)|* } N'denotes the factorial of N, and
Ryt1,a(mi,...,my) is the N + 1** ‘order moment of the
noise. This term is clearly zero when n(k) is circularly
symmetric, so that the analysis is immune to such noise. In
addition, the analysis is immune to noise with symmetric
(asymmetric) probability density function when N is even
(odd). We therefore drop this term in the sequel.

The polyspectrum is given by the N-dimensional Z-transform
of the N + 1** order moment (by a generalization of the
Wiener-Kintchine theorem):

CHﬁl(z‘)ﬂ_;\l(zli Tees ZN)(5)

i=1

Snyir(zr,...,28) =

where C = o2V N1. In what follows, we discuss identifi-
cation methods for LTI-ZMNL, LTI-ZMNL-LTI and some
Volterra models using the above equation.

3.1. LTI-ZMNL models

We make the following statement for a ZMNL nonlinearity:

Statement: The N +1¢" order polyspectrum of the ZMNL
output v(k) is given (to a constant factor) by the product
of the power spectra of the ZMNL input u(k):

N

K] Seul=)
=1
N

KT IH:(=)P
1=1

where K = a',NN'CN, SN+41,v(z1,22,...,2n) is the N +
1** order polyspectrum of »(k), and Sz,u(z) is the power
spectrum of u{k) (see figure 1). The above equation follows
from equation 5 and equation 3 (H2(z) = 1). Clearly,
Sn+1,0{21,22,...,2n) has no phase information. This is
because the ZMNL input is Gaussian [3]. A 1-D slice of the
above can then be used to identify |H1(z)| and therefore
the impulse response (if it is of minimum phase) without
knowledge of the ZMNL coefficients

Snt1,0(21,22,...,2N)

3.2. LTI-ZMNL-LTI models

Using equations 5 and 3, we get:

N

KH |Hy (2:))? Hz(2:)) H3 ( Hz.

i=1 =1

SN+1,,-(21,...,ZN) =
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It is possible to identify Hz(z) under some conditions using
1-D diagonal polyspectral slices [6]. In general however, we
may use a 2-D slice of the type:

§N+1,r(2x,22) _A_ SN+1’7-(1,...,21,...,22,...,1)
2

= Ko ][00 Ha(=)]H5 (2122)

i=1

where K, = K(|H1(1)]?H2(1))"~? (note that other slices
can be used if K4 = 0).

3.2.1. Phase of Ha(z)
The phase ¥n41,-(21, z2) of the 2-D slice is given by:

\I/N.H,r(zl,zz) é Angle[§N+1,,-(zl,zz)]
= ox + d2(21) + d2(21) — d2(2122)
= $y(21) + b2(21) — b2(2122) (6)
where 5 = Angle[K.), ¢2(z) = Angle[H2(2), and ¢,(z) =
$2(z) + dx. The above equation resembles the expression

for the bispectrum of a linear time-series and methods de-
veloped for this purpose [1] can be used to estimate ¢2(z).

3.2.2. Cepstral Domain Identification

We discuss a parametric identification method here. With
the ARMA model:

Hj(z) = IJ'(Z_I)OJ'(Z)AJZ_d’» 7=12 M

where

HL‘j(l —aijz7h)
1533 (1 - cijz™)

Loy

O;(z) = H(l—b.‘,‘Z),j:l,Z

=1

L") =

where I;(27') is the minimum phase component of the
linear filter with transfer function H;(z), {a:;Vi, 5} and
{ci;Vi, 5} are (respectively) its zeros and poles (lai;|, |ci;| <
1V4,j), O;(z) is the maximum phase component with ze-
ros {bi;} inside the unit circle (|b;;| < 1 V%,7), A; and d,
are the gain and linear phase shifts of the transfer function.
This important restriction that there be no zerces on the
unit circle can be relaxed [7] by using the polyspectral slice
on a sphere of radius different from unity. The complex
cepstrum &(m, n)AZ " {In[Sn41,r(21,22)]} of the 2-D slice
is given by: -

( l'Il[Kai.A1|4|A1I2A2] m=uU,n=0
—Am)=B(m) _ Azlm) 5,0 =0
ACnfam | Baem) < 0,n =0
. —A1(0) B} (n) A’(") n>0m=0
é(m,n) = AT(n)4B1(=n) + Ba(—n) n <0 m=0
. n n ’ —
E2(m) m=n2>0
_m
ﬁz(m;"‘.l m=n<0
0 otherwise

where A;(k) and B,(k) are the differential cepstra of the
impulse response of the filter (and hence termed the differ-
ential cepstral parameters) defined as:

-

Ly

1y

A(R) A

EHM

By(k) A b" (8)

1

Clearly, A2(k) and Ba(k) can be readily identified from the
above equation using estimates of the cepstral sequence.
Procedures for estimation of cepstral sequences are dis-
cussed in [7]. The impulse response ha(k) can be recov-
ered using the well-known recursive relation. The minimum
and the maximum phase responses 12(k) and o02(k) of the
response ha(k) are recovered using the following recursion
with 1;2(0) = 02(0) =1

T

+

(k) = _TZ Ax(n —1).d2(k —n +1)

Z 2(1 —n).o2(k—-n+1) (9)

n=k+1

o2(k) =

x| =

Then ha(k) = i2(k) ® 02(k) (® denotes convolution). Since
Aj(k) and Bi(k) (of the first filter) cannot be estimated
uniquely for reasons discussed earlier, the magnitude re-
sponse (and hence the impulse response if it is of minimum
phase) are recovered using Ai(k) + B{(k) estimated using
the cepstral sequence &(m,n)

3.3. Volterra models

Since the N + 1** order polyspectrum depends only on the
linear and the N*M order kernels, kernels of other orders
cannot be estimated. Clearly, the N** order kernel can be
estimated from equation 5 when the linear kernel is known.
Also, recovery of both the linear and the Nt order kernels
may be possible by moment matching [4].

4. PERFORMANCE ANALYSIS

Performance of the cepstral domain identification method
for LTI-ZMNL-LT! models is analyzed by means of Monte-
Carlo simulations. A quadratic ZMNL with C; = 1 and
C> = 0.8 + 0.1¢ was used. The transfer function of the first
linear subsystem was assumed to be:

(1 —aiz71)(1 = b12)(1 — bp2)
(1 —ciz=)(1 —c2z7t)

Hi(s) = (10)
wherea; = —0.1,4; = (\/§+i)/4\/§, by = 0.15.(\/§+i)/\/§,
c = 03.(1+ \/gz and ¢z = 0.35 — 0.257. The transfer
function of the second linear subsystem was also assumed
to be of the same form as H;(z) above, but with coefli-
cients: a1 = —0.1, by = (V2 + 1)/4V2, b2 = 0.15.(v2 +
i)/V2, ci = 0.3.(1 +V/3i), and ¢z = 0.35 — 0.251. The
input was assumed to be circularly symmetric Gaussian se-
quence of unit variance. Circularly symmetric Gaussian
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noise was added to make the Signal to Noise Ratio (SNR)
10dB (SNRA10logio[||r(k)|I*/1In(k)[[?]). The FFT based
procedure [7] was used to estimate the 2-D cepstral se-
quence. A»(k) and B;(k) were estimated using the cepstral
equation, and the impulse response h2(k) using equation
9. Hundred realizations of the magnitude and phase of the
transfer function H»(z) (estimated using 8000 data sam-
ples) are superimposed in figure 2 (top) and the average of
these realizations is compared to the actual values in the
same figure (bottom). The figure also compares the esti-
mates obtained with 4000 and 16000 length data records.

5. CONCLUSIONS

A simple method was presented for blind identification of
N** order LTI-ZMNL-LTI models with circularly symmet-
ric Gaussian input that bases its estimates of the impulse
responses on a 2-D slice of the N +1t* order polyspectrum of
the output. The coefficients of the ZMNL are not required.
The linear subsystems are allowed to be of Non-Minimum
Phase, though the first subsystem can be completely iden-
tified only if it is of minimum phase. ldentification of some
restricted Volterra models is also possible. It was shown
based on Monte-Carlo simulations that the methods per-
form effectively.
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Figure 1: The discrete-time LTI-ZMNL-LTI model
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Figure 2: Recovered transfer function H(z).



