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ABSTRACT

In this paper, two models of long-range dependence
with finite and infinite variance that have recently been
proposed in the mathematics literature are considered.
The models are used for the characterization of experi-
mental data in order to determine the possible benefits
they offer over existing models. They are presented un-
der a unified framework and their similarites and dif-
ferences are investigated by applying the models to real
world data in the form of infrared background signals.

1. INTRODUCTION

Long-range dependence is the presence of a significant
correlation between observations of a signal separated
by large time spans. It is closely linked with self-
similar stochastic processes and random fractals which
have been considered extensively, though only recently
for signal processing applications. The phenomenon of
long-range dependence, also referred to as persistence,
can be found in many naturally occuring processes in
diverse fields such as hydrology, geophysics, biologi-
cal systems, and remote sensing. Signals with strong
long-range correlations can not be modelled with tra-
ditional models, such as the autoregressive moving av-
erage (ARMA) model [1], since these models assume a
rapidly decaying dependence that assumes distant ob-
servations to be uncorrelated. Instead, models specif-
ically designed to characterize this long-range depen-
dence must be used in order to optimize the perfor-
mance of signal processing algorithms. Models of long-
range dependence have previously been proposed and
have found common use. Fractional Brownian mo-
tion (fBm) and its increment process fractional Gaus-
sian noise (fGn) [2] have been considered extensively in
the random fractals literature. The fractional ARIMA
model has already gained popularity in the hydrology
field [3] and has only recently been considered in the
signal processing community [4].

These models, although good models of long-range
dependence, are limited in their scope, since they make
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the assumption the data arises from a Gaussian pro-
cess, which often is not true, as in the case of back-
grounds of infrared scenes [5]. This type of data many
times has impulsive behavior and thus high variability,
an indication of a long-tailed distribution, which is cer-
tainly non-Gaussian. These probability distributions
have as the name implies long “fat” tails and therefore
infinite variance. Infinite variance means the second-
order moments do not exist in theory (are infinite) and
the data contains extreme values or “spikes” in prac-
tice. Stable distributions have been found to be good
models of infinite variance processes [6]. By generaliz-
ing the distribution of the data in these existing models
from Gaussian to a-stable, a new much richer class of
signals can be characterized. Since the Gaussian distri-
bution is a member of the family of stable distributions,
the new models will contain the old models as special
(finite variance) cases.

2. LONG-RANGE DEPENDENCE

As the name implies, long-range dependence is char-
acterized by strong dependences at large lags and has
led to such processes being referred to as long memory.
The correlation at these large lags although small, by
no means can be considered negligible. The dependence
decays hyperbolically, rather than exponentially as in
the case of the traditional short-memory models. Hy-
perbolic decay of the dependence implies a self-similar
stochastic structure within the data, which refers to the
fact the signal retains the same appearance at different
levels of resolution. This can be formulated as

x(at)éaHx(t) (1)

for a > 0, where £ denotes equality in distribution
and H € [0,1] is the self-similarity or Hurst parame-
ter. The concept of self-similarity is one of the corner-
stones of the theory of random fractals, such as fBm,
and explains their popularity as models of long-range
dependent signals. Heuristically, the self-similarity pa-
rameter H can be thought of as a measure of the irreg-
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ularity of the signal, where smaller values correspond
to greater irregularity.

Another trait of long-memory processes is the 1/f
type behavior in the power spectral density, which is
a power law relationship, i.e. S(w) ~ u% where a is
a constant. When the power spectral density is plot-
ted on a logarithmic scale, a linear relationship results.
This has resulted in long-range dependent signals often
being referred to as 1/f noise.

3. STABLE DISTRIBUTIONS

The family of stable distributions have been found to be
good models of infinite variance [6], where the tails and
the skewness of the distribution are characterized by
the stable characteristic exponent « and the symmetry
parameter 3 respectively. Contained in this family are
the Gaussian (a = 2, # = 0) and the Cauchy (a =1,
B = 0) distributions.

A stable distribution is defined as a distribution for
which the linear combination of independent identi-
cally distributed (iid) random variables will preserve
the original distribution within a linear tranformation.
This is known as the generalized central limit theorem
and is given by

1 +zg+...+:cn.i.a.v+b (2)

where a and b are constants, x; are iid random vari-

ables, and £ denotes equality in distribution. Another
attractive property of stable distributions is the fact the
distribution will be preserved within any linear model.
Although stable distributions have only recently been
introduced to the signal processing community, a great
deal of theory has already been developed [6]. A rea-
son they have not gained widespread acceptance is the
lack of an analytic closed form expression for the prob-
ability density function. However, this problem can
be overcome by looking at the characteristic function
® (w) given by .

) = eiaw—|aw|°(1—iﬂ1%[tan%°~)
(‘d) - eiéw—low](l—iﬂ%],—ﬁ'ln le)

ifa #1,

fa=1.

(3)

The parameters of the stable distribution are the stable
characteristic exponent a (0 < o < 2), the symmetry
parameter 8 (—1 < B < 1), the spread parameter o,
and the location parameter 8. The shape of the distri-
bution is completely specified by o and /3, whereas é
and ¢ simply perform a linear transformation. In many
cases a symmetric a-stable (SaS) distribution can be
assumed (3 = 0), for which the characteristic function

simplifies to )
<I>(w) - ezéw-|aw (4)

The lower the value of the characteristic exponent «,
the “fatter” the tails of the probability density function

Ia

become and the more impulsive the data is with greater
probability of extreme values.

4. MODELS

The two most common classes of models for long-range
dependence fall into the categories of either self-similar
stochastic processes or fractional ARIMA. Although
they have many similarities, they also have many im-
portant differences. When discussing models one has
to make the distinction between stationary and non-
stationary models. In this section fractional Lévy sta-
ble noise (fLsn) and the fractional ARIMA model driven
by a-stable innovations are considered as stationary
models of long-range dependence processes with finite
or infinite variance. Their non-stationary counterparts
are briefly discussed within the context of the individ-
ual models.

4.1. Fractional Lévy Stable Noise

The fractional Lévy stable noise (fLsn) model is a gen-
eralization of the well known fractional Gaussian noise
(ftGn) process. It is the increment process of the non-
stationary fractional Lévy stable motion (fLsm) model
[5]. As discussed earlier in this paper, the capabilities
of the fGn modcl are limited since it makes the as-
sumption of a Gaussian distribution. However, if the
distribution is generalized from Gaussian to a-stable, a
much richer family of processes can be described. The
causal representation of the !Lsn model is formulated
by the stochastic integral [%]

t
sy= [ [e+1-9"F - =07 e
-a

(5)
where M, (d€) is a white SaS noise measure. A heuris-
tic interpretation of this stochastic integral is to view
it as a weighted “sum” of white a-stable noise, which
is in fact what the discrete version of the fLsn process
is. Discrete fLsn is obtained by using a summation in
place of the integral in Equ. 5, which amounts to sam-
pling the continuous time fLsn process. Note, there are
some aliasing issues to be addressed in this formulation,
since continuous-time fLsn has an infinite bandwidth,
but this discussion is beyond the scope of this paper.
Note, the dependence structure of fLsn has been built
around the point H = ;1; with positive long-range de-
pendence for H > %, negative long-range dependence
for H < é, and independence for H = é Fig. 1 shows
several one-dimensional realizations of fLsn with differ-
ent values of o, with the same self-similarity parameter
(H = 0.5). The extreme values in the realizations i
crease in number and magnitude for lower values of .
What appear to be trends is actually the presence of
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flsn alpha=20 fLsn aipha~ 1.8

Figure 1: 1-D realizations of fLsn (H = 0.7).

long-range dependence. The non-stationary counter-
part to fLsn is fractional Lévy stable motion (fLsm),
which is formulated by modeling its increment process
with fLsn. The fLsm process is then defined as the
integration of the fLsn process.

The dependence structure of fLsn, although closely
related to the special case of fGn, is somewhat diffi-
cult to formulate with existing techniques. Since fLsn
is an a-stable process with infinite variance it does not
make sense to talk about correlation functions, since
the second-order moments of the process do not exist.
Instead we must formulate the dependence in terms of
the codifference function [6], which like the correlation
function is zero in the case of independence and sym-
metric. In the Gaussian case (@ = 2), the codifference
function reduces to the correlation function. Rather
than go through the lengthy details of formulating the
dependence structure of fLsn in terms of the codiffer-
ence function, it is insightful to look at the correlation
function of the fGn process, noting the dependence of
the fLsn process is similar in nature. The correlation
function of the discrete fGn process is

o’ 2H 2H 2H

rik) =5 {lle+ UPF - 2627 + k- 1P} (©)
and the power spectral density takes on the desired
form, having a power law relationship (S (w) ~ |wl1_2H)
at frequencies near zero. It is quite evident the depen-
dence is decaying hyperbolically, allowing this model to
characterize the long-range correlations found in many
natural events and not limiting it to Gaussian pro-
cesses.

4.2. Fractional ARIMA
The fractional ARIMA model was first considered by

Hosking [3] for the Gaussian case. The model is made
up of two components: the ARMA and the fractional

difference portions. The model is excited by white (iid)
noise, which is passed through the two components of
the model. Since the ARMA process is well understood
this section will instead focus on the fractional differ-
ence portion of the model, but instead of limiting the
inputs of the model to be Gaussian, they are gener-
alized to be from a stable distribution. This like the
fLsn model is capable of modeling long-range depen-
dence processes with either finite or infinite variance.

The fractional differencing model is parameterized
by d the difference parameter and is

x[n]:Zh[n]w[n—k] (7)

where w[n] is a sequence of iid a-stable random vari-
ables. The process is defined as the difference oper-
ation, with a transfer function of H (z) = (—1_—1_1)—,{ ,
where d is the difference parameter, taking on non-
integer values. The impulse response h [n] of this pro-

cess is
dd-=1)---(d+n-1) (n+d-1}!
hin] = = .
] nl K (d-1)!
The difference parameter is closely related to the self-
similarity parameter H of a self-similar process (such

as fLsn)

(8)

1 Al

d=H " (9)

Since the self-similarity parameter is 0 < H < 1, the

difference parameter is in the interval -3 < d < H—-2
(for stationary processes).

The long-range dependence of the fractional ARIMA
process is somewhat difficult to characterize without
the use of the codifference function {6], which requires
a considerable amount of formulation in order to be
properly understood. However, it is again insightful to
consider the Gaussian case, for which the codifference
and correlation functions are equivalent. A fractional
ARIMA process driven by Gaussian innovations will
have a correlation function of

"] = d(1+d)---(k-=14+d) (10)
(1-d)(2-d)--(k-d)

which becomes proportional to k£?¢~! as k — oo. On
the other hand the power spectral density is S (w) =
(2 sin %wy?d which becomes proportional to w™3¢ as
w — 0. Both the autocorrelation function and the
power spectral density have the desired properties of a
long-range dependence process and illustrate the type
of behavior to expect for the infinite variance case.

5. RESULTS

The fLsn and fractional ARIMA model with a-stable

innovations are applied to the modeling of signals from
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Figure 2: Fractional Lévy stable noise model results Figure 3: Fractional ARIMA results.

to be Gaussian, the resulting model is an inadequate

infrared (IR) scenes. The data is collected with air- L .
description of the underlying process.

borne IR sensors while viewing clouds and terrain be-
low. The data typically exhibit statistical self-similarity,

so the self-similar process (fLsn) and fractional ARIMA
models are natural choices. The data is also character-
ized by impulsive behavior. Many times in practice the
resulting extreme values or “spikes” are considered to
be outliers and are removed from the data. The two
proposed models allow for the modeling of such behav-
ior rather than ignoring it.

The IR data used are clearly non-stationary. How-
ever, the increments of properly selected short seg-
ments can be reasonably assumed stationary. The fLsn
model characterizes the increment process and the re-
sulting model is in essence fractional Lévy stable mo-
tion. The model is constructed by estimating the self-
similarity parameter H and the stable characteristic
exponent a [7]. The estimated parameters for the IR
signal are H = 0.83 and o = 1.86. The orginal IR sig-

nal and synthesized signals using the fLsn model and

the fGn model are shown in Fig. 2. Note, the presence
of extreme values in the fLsn synthesized signal, where
the distribution of the data was used in the model.
On the other hand the fGn synthesized signal does not
capture the impulsive behavior, since a Gaussian distri-
bution was assumed. Similar results are obtained when
using the fractional ARIMA model with a-stable inno-
vations. Again, the IR signal is non-stationary with
stationary increments. The model is applied to the
increments by estimating the parameters in the same
fashion as for the fLsn model and exploiting the rela-
tion between d and H (Eqn. 9). The estimated param-
eters are d = —0.22 and o = 1.80, which are used to
synthesize the fractional ARIMA signals with a-stable
and Gaussian innovations [8]. The resulting signals are
shown in Fig. 3. As in the case of the fLsn model,
if the distribution of the data is ignored and assumed
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