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ABSTRACT

We consider the parameter estimation problem for a class

of amplitude modulated polynomial phase signals (PPS),
observed in noise. The main contributions of this paper
are: (1) We prove that the High-order Ambiguity Function
(HAF)is invariant to certain types of amplitude modula-
tion; thus, phase parameter estimation proceeds as in the
constant amplitude case. (2) We derive the Cramér-Rao
bounds for both the amplitude and phase parameters, when
the additive noise is white Gaussian. (3) We show that
the HAF is almost additive for multi-component PPS. (4)
We establish the covariance bounds for the nonlinear least
squares estimator when the additive noise is (non)Gaussian,
and satisfies some weak mixing conditions.

1. INTRODUCTION

Many real life signals are nonstationary, and some of them
can be modeled as amplitude modulated (AM) and/or fre-
quency modulated (FM) signals. Friedlander and Francos
[2] considered the case where both the amplitude and phase
are linear combinations of known basis functions; they pre-
sented the maximum likelihood (ML) estimator, and de-
rived the corresponding Cramér-Rao bounds (CRB) for the
additive white Gaussian noise case.

Polynomial phase signals (PPS) are obtained when the

basis functions for the phase are {t™}M_,. Constant am-
plitude chirp signals (M = 2) are studied in [4] and [1],
and constant amplitude PPS of general order M are in-
vestigated systematically by Peleg, Porat, and Friedlander
see e.g., [6, Ch. 12], and references therein). Results for
stationary) random amplitude PPS are reported in [7], [8].
In this paper, we consider multi-component PPS with
deterministic but time-varying (TV) amplitudes,

z JEMI Gy t™
s(t) =3 m(t/T;8,,) ¢ “mi=e ™™ (1)
=1
t=0,1,...,7 — 1. The amplitude function pi(t/T;8,,) is
parameterized by 8, and satisfies the following assump-
tions [3]: (al) pz(u;Qm) is a real and continuous func-
tion of bounded variation for u € [0,1], and vanishes for
u ¢ [0,1]; (a2) p;(u;QPl) is differentiable in 8, and the
derivative is of bounded variation in u. The class of func-
tions satisfying (al) and (a2) includes the constant ampli-
tude model, the transient model, the linear decay model,
the polynomial model and so on [3],{10],[11]. Applications
of the deterministic AM PPS model include: seismic signal
processing (damped multi-component chirps), processing of
Doppler radar signals in a fading environment, and model-
ing of speech signals, to name only a few. Simulation results
and details of proofs will be given in [9] and [12].
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2. AMPLITUDE MODULATION AND HAF
Let us first consider the single component version of (1),

s(t) = p(t/T;8,) & Lomeo ™™™ = p(1/T;8,) 4%, (2)

where 8, :=[a0 a1 ... aM]I is the phase parameter vector,

and ¢(t;8,) := Eﬁ:o amt™. The high-order instantaneous
moment (HIM) (see e.g., [6, Sec. 12.6]) is defined as

M-1 (M -1 )
Puls()r] = [[ "9 -arl\ ¢ /7, (3

q=0

where s(*?) (t) := s(t) for ¢ even, and s (1) = s*(¢) for ¢
odd. The high-order ambiguity function (HAF), is defined
as the Fourier Series (FS) of the HIM,

T-1

. 1 —ja

Pu[s;a, 7] := Tleoo 7 Z Par[s(t); 7] e~ (4)
t=0

It can be shown [10, 11] that substitution of (2) and (3) into

(4) yields, under (al)-(a2), for finite 7,

Puyis;a, 1] =

[ / [p(un?”“du] &% §(a—a) (5)
M, {6)

where ¢ is a function of M, 7,an -1, and aps [6, p. 395), and
6(% is the Kronecker delta function.
rom (6), we conclude that: Polynomial phase signals
with time-varying amplitudes satisfying (al) and (a2), have
the same HAF, to within a constant scale factor, as the
corresponding constant amplitude PPS.
In practice, we observe a noisy version of (1),

o = MiITMTlg

2(t) = (1) + 9(t) = p(t/T38,) & Lom=o """ L g(1), (7)

where it is assumed that: (a3) g(t) is zero-mean, white
circular complex Gaussian with finite variance oy.

A natural estimate of (3) is Par [s(t); 7] = Pum [z(2);
], where the latter is defined similar to (3). The HAF
estimator is given by

T-1
Puyls;a, 1] = %Z ﬁM[S(t);T] e, (8)

and can be efficiently computed via the FFT. It is proved in

[10, 11] that Pa[s;c, 7] is an asymptotically unbiased and

mean square sense consistent estimator of Pu[s; a, 7).
Based on (6), one can estimate ajs from the peak loca-

tion of |Pum[s;a, ]|, multiply z(t) by exp(—jamt™), and
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repeat the procedure to obtain aar—1, and so on. Instead of
computing the FT of the HIM estimate, we can also apply
high resolution algorithms - such as the Kumaresan-Tufts,
matrix pencil, and MUSIC algorithms - to the HIM esti-
mate. Their performance and relative merits are discussed
in [10],[11], where special cases of p(t; -} are also considered.

3. CRAMER-RAO BOUNDS
The log-likelihood function for z(t) in (7) is given by

. T-1
If we denote the kth-element of §, by 8,,, and the lth-
element of 6, by 84,, then the entry of the Fisher infor-
mation matrix (FIM) corresponding to parameters 6,, and
Bg, is Jo,, 0, = —E[0?A /036, 004 ). 1t is not difficult to
show that Jo,, 0y, =0, and hence the FIM for the ampli-

tude part is decoupled from that for the phase part. The
(k,1) entry of the FIM for 4, is

2 2 90(t/T;0,) dp(t/T;8,)
>

o(t) - p(t/T58,) X2 (9)

Towt = o7 24 a6, a6, (19)
L ap(u;8,) 0p(u; 8

~ g/ p(wif,) 9p(uily) (11)
93 Jo 99, 99,

From (10), we see that J,xt = O(T), Vk,I, and hence
CRB(8,,) = O(T™"). Moreover, J,,xi does not involve 4(t),
and therefore CRB(6,, ) is not a function of Y
For the exponentially damped harmonic, p(¢/T) = po
exp(=bt/T), 8, = [po, b]', and from (10) we have
_202T % -2 ]

J — pg Po
ve 0.2 — =1 €2

(12)

g
T-1

ex:=T" Z(t/T)k exp(—2bt/T), k> 0. (13)

t=0
The diagonal elements of J ;1 yield the corresponding
CRBs,

2

. _ %5 €2
CRB(Po) = oT o€z — E% ’ (14)
2
CRB(}) = =tz —2 . (15)

2p3T eoea — €3

Note that the results of (14) and (15) hold for any é(t), not
just polynomials. For the special case of damped harmonics,
these results reduce to those in [3]. Note that since each ek

is O(1), the CRBs in (14) and (15) are both O(T™%).
Now for the phase parameters, we have

T-1
2 aé(t) 0g(t
Jokt = E?ﬂ:ﬁ(t/na—ﬁg";;—il)- (16)

Unlike Joki, Jo, in (16) can be O(T™) for different m’s
depending on the specific choice of ¢(t). For the polynomial

phase function ¢(t) = Ex___o amt™, which is of interest in

this paper, 84, := ax, and d¢(t)/dax = t*. From (16), we
conclude that for k,1=0,1,..., M,

k+l41 T-1
LSSy ATy (1)

Tem =TT
t=0
kt+i41 1
- 2—127—"/ u** o (u;8,) du; (18)
o2 o

hence, Jy i = O(T***1). The inverse of the (M + 1) x
(M+1) F?fM J4, whose (k, 1) entry is given by (17), therefore
yields CRB(i) = O(T~2™"!) as diagonal elements.

Exponentially damped chirp (M = 2) processes are of
particular interest in applications such as Vibroseis. For
such a process, eq. (17) yields for &£,1=0,1, 2,

2 €0 Ter T?e
J¢ = 2p°T T €1 T2 €2 T3 €3 s 19
o2
g T2 €2 ’Iﬁ €3 T4 €4

where ¢ is given by (13). The diagonal elements of J ;1 are

2 2
g €264 — €3

CRB(d0) = 32~ TD (20)
o2 —é

CRB(#) = % pt (21)
o2 — €2

CRB(é:) = ﬁ——“% o (22)

where D 1= €oe2es — €3 €4 — €0€2 + 2€1 €263 — €3. It follows that
the CRBs in (20), (21), and (22) are O(T™'), O(T?), and
O(T™®). Moreover, the CRBs for the constant amplitude
chirp model (b = 0) can be obtained from (20)-(22) with
ex = T/(k +1), and are given by CRB(do) =~ 4.502/(Tp3),
CRB(a1) =~ 9602 /(T°p2), CRB(a2) = 9002 /(T°p2). These

results agree with those in [1].

4. MULTI-COMPONENT PPS AND HAF

The HIM is a nonlinear operator, hence it is expected that
cross terms appear when one computes the HIM of a multi-
component process. In general, Py of an [—component

signal introduces as many as 127~ L cross terms, which is
2for L =M =2,andis 14 for L = 2, M = 3. The objective
of this section is to argue that the cross terms almost always
disappear in the HAF domain; i.e., after the limiting FS
operation. This implies that the HAF of a multi-component
PPS can almost always be approximated by the sum of
HAFs of individual PPS components.

For simplicity, we discuss here the two component (L = 2)
case and constant amplitude PPS. Results for general multi-
component and/or TV amplitude PPS follow similarly. We
start with chirp signals (M = 2), which are modeled in
discrete-time as,

s(i) =p e.7'(<-"-12t7+<111t+°‘1o) + p2 e.7‘(¢122t2+<12-1t+ﬂzo). (23)
We assume w.l.o.g. that pi1, p2 are real, and p1 > p2 > 0.
The instantaneous 2nd-order moment of (23) is given by:

'Pz[s(t); 1]= p? e2ioat eila11—a13) +p§ g2Jaaat (@21 —a22)
(24)
j(a1a—ag2)t*+5(a11 —az1+2a22)t+5(az21 ~az2+ajo—a20)

(25)

j(aaa=a12)t?+i(az1 —a11+2a12)t+5(a11 —~a12+a20—a10)

+2p1p2 €

+2p1p2 €

26
The “auto” terms in (24) are the 2nd-order HIM of the( in2
dividual components and produce spectral lines at o = 2a12
and 2a2; with magnitudes p? and p} respectively. We are
interested in evaluating the contributions of the cross terms
(25) and (26) to the HAF, P2[s;@,1]. Such contributions
have been characterized as non-random noise.

Since a factor exp(jwot) only shifts spectra lines in the
FS domain, and exp(jéo0) has no effect on the magnitude,
we shall focus on the behavior of FS{exp(jv2t°)] only, where
Vo 1= @12 — a22.
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Surpnsingly, although exp(jv2t?) is aperiodic in contin-
uous time V w2, it is periodic in discrete-time for v; =
2w N/D, where N, D are co-prime integers. To see this,
recall that any integer ¢ can be written as ¢t = 3D +k, where
i = [t/D], and k € {0, D —1]. It follows easily that

e,’ugﬂ — ej21r(k2+2s“Dk+i:"D3)N/’D = ejzn-k’/v'/v (27)
which is periodic. It turns out [12] that when D is a multiple
of 4, then D/2 is the period, otherwise D is the period.
Since exp(j27t2 A/ D) is periodic, its FS coefficient, denoted
as h(e), contains spectral lines. We can show that when
D is even, k(a) consists of D/2 lines, and maxalh(a)| =

\/2/D; whereas when D is odd, h{a) consists of D lines,

and maxqlh(a)] = /1/D.

Because line spectra are produced only when v is of the
form 27 times a rational, and rational numbers have mea-
sure zero, we conclude that lines almost never occur in k(a).
One may argue that since any real number can be approxi-
mated arbitrarily closely by a rational number, line spectra
should be seen frequently. Our answer is that D has to be
sufficiently large to obtain a good approximation, and as

D — o0, the peak strength \/2—/5 or \/ﬁﬁ goes to zero,
and hence there will be no lines. I significant lines do show
up, v, must be of the form 2o /D with D small. There-
fore we assert that in general cross terms do not confuse the
spectral lines which are due to individual PPS components,
and the HAF is essentially additive.

From (24)-(26), if p} is always larger than 2p;p; times
the maximum of |k(@)|, due to the cross terms, then one
can always correctly identify the largest signal component,
estimate its parameters, remove this component, and reduce
the number of components by one [5]. The condition stated
in [5] for this to be feasible is p1/p2 > 2. We show next
that one can significantly weaken this constraint.

First, with 7 = 1, the leading chirp coefficients must
satisfy |a12] < 7/2 and |az2| < 7/2 in order to satisfy
the HAF-based identifiability conditions. This implies that
|V2) = |a12 — a2} < 7, and hence N/D < 1/2. Assume
p1/p2 > 1; next, we identify the worst case scenarios which
put additional constraints on p;/p2: (1) D =4, N =1,
|ai2 — a2z| = 7/2, which requires p1/p2 > V2, and (c2)
D=3, N =1, la;2 — az2| = 27/3, which requires p1/p2 >
2/+/3. Therefore we conclude that if |a12 — a22| # 7/2 or
27/3, then the successive estimation algorithm described
in [5] can be implemented, for any p1/p2 > 1. Otherwise,

one needs to ensure p1/p2 > V2 or 2/+/3. This is a much
weaker condition than the one stated in [5].

For a general Mth-order PPS, we prove similarly that
exp(jvamt™) is periodic if var = 20N/D. For M prime and
D an integer multiple of M?, its period is D/M; otherwise,
the period is D. The situation where M 1s a composite

number will be discussed in [12].

For Mth-order PPS, cross terms in the HIM are of the
general form Hfﬂ exp(jvmt™), and is periodic only when
every vm is of the form 2xN/D, which is rather unlikely.
Similar arguments can be used to conclude that cross terms
do not contribute much to the HAF. Detailed analysis will
be provided in [12].

5. NON-LINEAR LEAST SQUARES
ESTIMATOR

Although the FFT-based HAF method is easy to imple-
ment, it is suboptimal; hence, we consider the non-linear
least squares estimator (NLLSE), for both the phase and
amplitude parameters. The main result is given by Theo-
rem 1, and is a generalization of results by Hasan [3], who
considers the pure harmonic, i.e., (M = 1) in (7).

Consider the noisy monocomponent model in (7). In ad-
dition to (al) and (a2), conditions (a3) and (a4) below
are also assumed to be in force.

(a3). The noise sequence g(at} is strictly stationary, cir-
cularly symmetric (i.e., its real and imaginary parts have
the same distribution, and are independent of each other)

and purely non-deterministic, with zero mean, E|g(t)[*
< o0, k = 0,1,...., and satisfies the mixing condition,

Er|ckg(£)| <o, k=23, .
(a4). The basic identifiability assumption is:

1
@, =6) if / low:8,) — p(ws8)P du=0  (28)
[+

Let 8, := [ao,alT,...,aMTM]I, 9 := [Qp)ip]’ and let 8,
denote the true parameters. Note that we have re-defined
84. For convenience, we do not explicitly denote the de-

pendence of §,, 8, 8, and s(-) upon T. The NLLSE, 8,
minimizes
T-1
Qr(®) = Y ls(®)— st} (29)
t=0

and can be initialized by estimates obtained from the sub-
optimal HAF scheme.

5.1. Rate of convergence & Consistency

Lemma 1 Let § denote an estimate of § based on T sam-
ples. Then, .

T-1
— 3 1 . 3 - 2 —
J=lim =3 la(n8-snOF =0 (30)
t=0

only ifép =8,+0p(1), and ax = ax + 0p(T™%). O

Proof. Omitted due to lack of space; see [9].
Note that the rate of convergence of the k-th phase pa-

rameter is of order 1/T*. Consistency of the NLLSE follows
directly from Lemma 1 and assumption (a3).

5.2. Covariance Expressions

Since the NLLSE is consistent, the Taylor expansion

s(t;0) = s(t;8,) + (8 — 8,) Ves(t;8)le=a, +0p(1), (31)

holds for large T; the order op(1) for the remainder term
follows from Lemma 1 (recall the rates of convergence, and
note the scaling). We substitute (31) and (7) in (29), to

obtain a quadratic function in 6= Q—QO; the least squares
solution is given by the linear system of equations,

§=Az'br (32)
where
Ar(m,n) := 2 Real f 9s(4,9) 9s°(t:0)
— 0m 0n
T-1
br(m) := 2 Real Z 8‘;(;;@) g*(t)
=0

Vector br has zero mean; hence § has zero mean, and since
matrix Ar is non-random (and real, symmetric), we have

cov (8) = E{#8"} = A7' cov (br) AT'.  (33)
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We need to evaluate the asymptotic values of the component
terms. We will find it convenient to define the following:

1
/ um+np(u§2p)P(u;Qp) du = ‘Ym,n(_Qp) (34)
0
Y 9p(u;8,) dp(u;8,)
— ——du = Ymn 0 35)
/o 90pm  00pm 0,y (
Y 0p(u; 8,) 8p(u;8,)
g = du = 9nn(f 36
/o 30pm , 9pn 8,) (36)
Yop(u;8,) . i
A aap,m_-— p(u,Qp)u du = 0m,n(ﬂp) . (37)

By assumptions (al)-(a2), the elements of the matrix
T~!Ar are given asymptotically by,

o Lo {ke(8)} 0
Hi= o, phr =2 [ 07" {rmatg)) | B
where k¢ and Ym,n are defined in (34) and (35); k, £ range
from 1 to N,, the number of amplitude-related parameters,
and m,n range from 0 to M. Notice that matrix H is
block-diagonal: the amplitude and phase parameters are
uncoupled.

The (m, n) element of the covariance matrix, Cs,r, of the
zero-mean by is given by

T-—-1T~1
9s*(t;8) ds(u; 6
Cor(m,n)=2Re Y Y Rft— u)—%(g——)ié}i (39)
t=0 u=0

where Ry(7) = E{g*(t)g(t + 7)}; two terms have dropped
out since circular symmetry implies E{g(t)g(t + )} = 0.
For the amplitude parameters, we have to evaluate

S & n(H0,) 00(%5:8,)

Z ZRQ(t) 3 ,m 80,

t=—T4+1 u=0
o eI Buily)—id(ttuily)

Br =

For M > 2, it is generally hard to evaluate fr, since
exp(j6(t)) is not of bounded variations. Let

2= Y |Re(7)] < oo, (40)

T=—00

where the inequality follows by Assumption (a3). Now,

T—1T-1
Op(4;0,) 9p(%:8,)
|8z < | Rg(t)| = =
; ; agp,m agp,n

x T3 dmn(d,) .

Similarly, for the phase parameters, we obtain the upper
bound T&g Ym,n(8,) . For the cross-parameters, 6,, and
84,, we obtain the bound Ta2dx,(8,).

If g(t) is white, Ry(t — u) = 026(t — u); the double sum-
mation in (39) collapses to a single summation over ¢ = u,

and it is easy to show that the amplitude and phase pa-
rameters are decoupled. Using (34) and (35), we obtain

Cb,T = Ta'gH, and
2
cov (8) = %g H™. (41)

These results reduce to those of Peleg-Porat who consider
the special case of a Gaussian g(t), and p(u;Qp) = po. Note
that the matrix H is a Hilbert matrix in the constant am-
plitude case; we can obtain approximations for moderate
sample sizes by retaining terms of order O(1) in H. Our
results are summarized in Theorem 1.

Theorem 1 Under assumptions (al)-(a4), the NLLSE is
asymptotically normal and unbiased. If g(t) is white, the
covariance matriz is given by

- o2
cov (8) =~ TgH_l (42)
where matriz H is defined in (88). In the case of colored

noise, we obtain an element-wise upper bound
-2
~ J - _
cov (@ o< B IHTHeH| (%)

where |A| denotes the absolute value and o < denotes
element-wise inequality, and
{ﬂk.n(g.p)} . (44)

{9x,(8,)}

H.:=2 M ;
{9em(8,)}  {vmn(f,)}

where v, 7, 9 and 9 are defined in (34)-(37), and &} in

(40). The elements of matrices H and H. are evaluated at
the true parameter vector §,. O

Based on Theorem 1, we assert that each parameter in
8, has variance O(T"), whereas var(im) = o(T—2m"1y,
Asymptotic normality follows along the lines of Hasan [3]
under assumption (a3). Under the stronger assumption
of absolute summability of cumulants of g(t), asymptotic
normality follows immediately from the ergodicity results
of Dandawate-Giannakis (by assumptions (al)-(a2), the
partials of s(-) are bounded).

The multi-component case is discussed in [9]. It will be
seen that the amplitudes and phase parameter estimates
are generally not decoupled; and that phase (amplitude)
estimates of different components are also not decoupled.
Note that even in the case of white noise, the FIM (CRB) is
block diagonal only if L = 1 (single component} or M =1
(pure harmonic). Here the periodicity issues discussed in
Section 4. are important.
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