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Abstract

The problem of ezplotting cyclostationary statistical
information for the purpose of array processing is
addressed. Techniques for ezploiting second order
periodic information are proposed for the enhance-
ment of cyclic-MUSIC and Self COherent REstora-
tion (SCORE) algorithms. The robustification of both
cyclic MUSIC and SCORE can be accomplished by in-
creasing the emount of cyclic information used. Sim-
ulation results are presenied which show the perfor-
mance improvement by the modified algorithms.

1 Introduction

Recent development in cyclostationary signal pro-
cessing by Gardner et al has resulted in two ef-
fective statistical array processing methods. The
first is a subspace direction of arrival (DOA) esti-
mation approach called cyclic-MUSIC [1]. The other
is a blind spatio-temporal filtering algorithm called
SCORE (Self- COherent REstoral) [2]. SCORE has
been shown to give the optimum solution for the sig-
nal extraction problem using cyclostationary statistics
[2]. Because both of these methods employ the cyclic
correlation matrix, they both can potentially be im-
proved by exploiting many cyclic correlation matrices
(evaluated at various lags, 7). This paper addresses
the issues of how to effectively use the information
given in more than one cyclic correlation matrix with
cyclic-MUSIC and SCORE and how to robustify the
algorithms and improve their overall performance.

2 Problem Description

Consider a receiver platform consisting of n
monopole antennas physically aligned in a row. Each
antenna receives a signal, z;(t), multiplies it by a fac-
tor w}, and sums it with other signals, producing y(t).
The relationship between the inputs and the array out-
put is conveniently formulated in vector form as

y(t) = whx(t). (1)

For the subspace DOA estimation algorithms consid-
ered here, the data {zi(t)} are used to form direction
estimates. For spatial filtering approaches the signal
x(t) is processed by w to yield a desirable y(t). The
typical assumption that all SOI (signals of interest)
and interferences are narrow-band plane waves will be
made here. For a plane wave impinging at an angle of
8, the electrical phase shift, ¢, is ¢ = %sin(e) where

1589

A is the wavelength of the signal carrier and d is the
distance between uniform antennas. Hence, we can
express the received signal as

L

x(t) =) a(8:)si(t) +n(2) (2)

i=1

where s;(t) is a signal impinging from an angle 8;,
L is the total number of plane waves impinging
on the array, and n(t) is receiver noise. a(f) is
a direction ”steering” vector of the form a(f) =
[1 e?...e/("" 19T which models the array response
to narrow-band plane waves.

2.1 Conventional MUSIC

Before cyclic-MUSIC is described, the conventional
MUSIC algorithm will be briefly explained here.

Consider once again the signal x(t) in equation (2).
Suppose there are n antennas in the array and L sig-
nals in the environment. The purpose of MUSIC is to
estimate the DOA of each of the L signals. In addition
to the above assumptions, it will be assumed that the
sensor noise is white and zero mean and that the L
signals are uncorrelated and arrive at the array from
L distinct angles.

Under these assumptions, x(t) is expressed as in
equation (2),

x(t) = A(6)s(t) +n(?) (3)
and its autocovariance matrix is
R.; = A(O)R,; A (8) + 021, xn (4)

where A(6) is a n x L matrix with i** column equal to
a(f;). o2 is the variance of the noise. The eigenvectors
corresponding to the L largest eigenvalues provide a
basis for the signal subspace. Those corresponding
to the (n — L) smallest eigenvalues are a basis for the
noise subspace. Because R, is positive definite, those
two subspaces are orthogonal.

The principle behind MUSIC is to obtain an esti-
mate of the noise subspace, V,,, from an estimate of
R;.. The DOA estimates of impinging signals can
then be determined by finding the maxima of

1
FO = vea@r 5)

Those maximizing §’s are the DOA estimates.
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2.2 Cyclic MUSIC

Cyclic-MUSIC differs from conventional MUSIC
only in that the null space of the cyclic correlation
matriz of x(t) is used to find the correct direction, 6,
[1]. The cyclic correlation matrix has the following
definition:

RE (1) =< x(t+7/2)x" (t—7/2)-exp(—j27at)} >‘,(o )

6
If R2,(7) exists and is nonzero for some 7 and some
nonzero a, then x(t) exhibits second order periodicity.
Notice that RZ,(7) will be different for different 7. In
[1], no value of 7 is specified for use in cyclic-MUSIC. It
is natural, then, to seek ways of using the additional
dimension to improve the performance by including
multiple lags of RZ (7).

2.3 Signal Extraction by SCORE

Another array processing problem is from a signal
extraction point of view. In this approach, the receiver
can use a priori information concerning the statistics
of the SOI to separate it from noise and interference.
In the case of SCORE, it is assumed that the receiver
knows that the SOI has non-zero cyclostationary con-
tent for some 7 at a known cyclic frequency, c.

The extraction of the SOI is accomplished by con-
structing a suitable cost function on y(t) and optimiz-
ing with respect to the weights. In the least-squares
SCORE algorithm, the following cost is used [2]

Fyo(wic) =< [y(t) = r(t, )" >n (7

where r(t,7) = c¥x(t — 7)e’**** and N is the data
length. The solution to (7) can be thought of as max-
imizing the correlation between x(t) and a time- and
frequency-shifted version of itself. This correlation can
only exist for a nonzero « if x(t) exhibits second-order
periodicity.

It is shown in [2] that the solution which minimizes
(7) (assuming infinite data is available) is

Wopt = R} RZ,(m)ee™ 77 (8)

where ¢ is an arbitrary conmtrol vector as long as
ca(6,) # 0. It is shown in [2] that (8) maximizes the
receiver’s output SNR. However, the true solution may
take long data lengths to compute accurately. There-
fore, it is highly desirable to look for ways to improve
SCORE’s convergence properties. Intelligent use of
the additional information given at different 7 gives
us a more robust SCORE algorithm.

3 Robustified Algorithms
3.1 Multiple-7 Subspace DOA Estimation

Consider an environment consisting of a single
plane wave signal, s(t), embedded in noise. Our signal

model is
x(t) = a(6,)s(t) + n(t). (9)

The goal, then, is to estimate 8, from x(t).

By obtaining L cyclic correlation matrices corre-
sponding to L different 7, L estimates of the null space
can be obtained. The L null space estimates can be
combined to produce a more accurate estimate of the
true space.

It is proposed here to first find the null space of
each cyclic correlation matrix available, according to
how many 7 are used. Second, stack these matrices to
form a new matrix, Van:

Vin =[ Va(r) Va(m) VAGARE (10)
Here, V,,(7;) represents the null space estimate based
on the cyclic correlation matrix corresponding to 7 =
7;. The new null space is formed by computing the left
singular vectors of V., corresponding to the largest
singular values. These vectors will be the basis of the
new estimated null space. If L different values of T
are used, then the columas of the new matrix, say Uy,
will be the singular vectors corresponding to the n— M
largest singular values of V;,, where M is the number
of signals. We can now estimate 8, using

b, — max ——— (11)

o Ufa@)l

Similarly, we may estimate the DOA from the signal
subspace, which is found by seeking the M dominant
left singular vectors of

Vs = [ VB(Tl) VJ(TZ) V-’(TL) } (12)

3.2 Multiple-r SCORE

The reason for the slow convergence of SCORE is
the time necessary to compute, by averaging incoming
data, the matrices R, and RZ, (7). The accuracy of
both improve as more data is averaged. The more
accurate the calculation of those two matrices are, the
closer the weight vector given by SCORE will be to the
optimum SINR solution, Wep:. The calculation of R;I1
itself cannot be accelerated. RZ,(7) can be computed
with greater precision, however, if information taken
from different values of 7 are combined.

3.2.1 Pure Average Multiple-r SCORE

One approach is to alter the existing SCORE cost
function. We will show one obvious way of doing so
with the least squares variety of SCORE.

The new cost that is proposed is

F—se(wic) =< 3 _|y(t) = r(t, T)* >v . (13)
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The optimization of Fr,—,. will take advantage of the
spectral correlation property of x(t) at various lags.
Because the new cost is a quadratic function of w, the
global minimum can be found by taking the gradient
of

Fr_se{wic) = wH Roow + cHﬁz,c (14)
~ S [e¥ R (rywe™ ™o 4 wH RZ, (r)ee 7],
R T

T

In the above expression, the R designation indicates
an estimate from finite data. Taking the gradient with
respect to w, we get

Reew — Z R&,(7)ce™i™™ = 0. (15)

This implies Wp_r = RZ1Y, RZ(T)e" 7" ]c

where W,,_, denotes the estimate of the optimum
weight vector in the sense defined above. Notice that
this is simply the sum of SCORE solutions taken at
various 7.

We expect this method to be suboptimal. Con-
sider that for some values of 7, the cyclic content of
the signals may be zero. Therefore, data taken from
lags which knowingly contain no signal information
shouldn’t contribute to the overall estimate. It stands
to reason, then, that there exists a better method of
combining the information. This reasoning prompted
the following parameter estimation approach.

3.2.2 Minimum Variance SCORE Estimation

Recall that, assuming s(t) is the only signal in the
environment with cyclic content at frequency «, then

R (r) = riy(7)a(8:)a" (6,). (16)
Substituting (16) into (8), we have
Wopt = 13 () BSta(8,)a® (B )ce ™. (17)

Hence, Wop: = vRZ}a(6,) where v is a complex scalar.
It stands to reason that we can obtain a good esti-
mate of wope by having a good estimate of a(6,). This
was the approach taken in [3], where the Cyclic Adap-
tive Beamforming (CAB) algorithm was proposed. In
CAB, a(6,) is obtained from measuring RZ (7) and
computing its left singular vector corresponding to its
largest singular value. Asymptotically, this vector will
be proportional to a(f,). The constant of proportion-
ality doesn’t affect the output SINR of the array. How-
ever, the CAB algorithm does not give the optimum
solution when the noise is not white.

We will approach this problem by determining the
set of parameters {8(7)} which give the smallest vari-
ance for a linear unbiased estimate of a(f,) using

{R2,(T)c}res as the data set. s is the indexed set

of all lags, 7, to be used for this purpose. Our esti-
mate of a(d,) will be

a(6,) = ) B(r)RZ(7)e. (18)

TES

To meet the unbiased requirement, {G(7)} must sat-
isfy
E{)_B(r)R3;(r)c} = a(6,) (19)

TES

and it must minimize the variance of a(f,).
From (16) and (18), we see that

E{&(8,)} = E{Y_ B(r)[r3,(r)a(6:)a” (6;) + A(r)]c}

=a(8,)a” (6:)c Y A(r)rd,(7) (20)

where R2 (1) = R, (7) + A(r) and A(7) is, by as-
sumption, a zero mean, uncorrelated random pertur-
bation matrix. That is, the elements of A7) are un-
correlated with each other and uncorrelated over 7.
(In reality, this assumption is somewhat imprecise,
but simulation results indicate it has merit.) If the
estimate is to be unbiased, then

la¥(8,)e Y B(r)rs (T = 1. (21)

It should be noted, however, that the above quantity
can be any nonzero number and still result in an esti-
mate which is unbiased to a scalar multiple of a(é,).
This is important because scalar multiples of R;}a(é,)
are all optimum solutions to the SCORE algorithm.
Proceeding, we have

var(a(4,)) = Z Z B*(11)B(m2)c? E{AH (1) A(m2)}e.

1 T2
Letting the variance of the elements of A(T) be 0%,
E{AH (1) A(T3)} = nod Inxnb(T1 — 72) (22)

Substituting (22) into the variance expression,
var(a(6,)) = noillel Y 18()P. (23)
T

The optimization problem is to minimize (23) subject
o (21). Taking an equivalent interpretation, we can
maximize

aH(8,)e | S Bl (1)
Fex T = ey, poe - %Y
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We can use the Cauchy-Schwartz inequality on the
numerator of Fg to write

la® (6:)e* 3., 18(r)1* 32, Irfs(72) P

Fg < 25
= nod [l 5, B()P? (%)
where equality holds if and only if

B(r) = v(r5 (7)) (26)

where « is an arbitrary nonzero real scaling factor.

3.2.3 Efficiency of MV-SCORE

If we further assume that the elements of the matrix
A(r) are i.i.d. gaussian, then the data becomes

{RZ.(T)ckres = {Xa(8,) + e}res (27)

where e is a gaussian random vector with i.i.d. el-
ements. Therefore, the minimum variance estimate
would be efficient. For real data, the central limit the-
orem tells us that the minimum variance estimate will
be asymptotically efficient.

4 Simulations

A. Multiple-t Subspace Simulations:

In this simulation the signal environment consists
of two PAM signals (of rate 1/T) embedded in white,
additive sensor noise arriving at angles of 40 and 50
degrees. The signals have cyclic content at the same
frequency-both being over-sampled 5 times per sym-
bol. The receiver platform is a linear array of 4
monopole antennas. The data length is 800 symbols
and the input SNR is 0 dB.

Figure 1 shows the curves defined by (11) from
sweeps of @ over 10 trials. Four different lags, 7,
(r = {0,1,2,3}) were used in the multiple-r algo-
rithm. The lag unit is 7/5. The multiple-T cyclic
MUSIC method (top) produces estimates that have
much smaller variance to those given by the single-7
(r = 0) algorithm (bottom).

B. SCORE Simulations:

In Figure 2, there is a single signal in the envi-
ronment arriving at 40 degrees embedded in white
noise. The input SNR is 10 dB. The graph repre-
sents the output SNR of the SCORE algorithm cor-
responding to different 7. An average of 10 trials is
shown. The performance of SCORE is much different
depending on which 7 is chosen. The pure average and
minimum variance estimators used information from
T = {0,2,4,6,8}. The simulation indicates that the
minimum variance method outperforms a pure aver-
age as well as the single-r methods in both long and
short terms.
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Figure 2: SCORE comparisons.
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