BET, THE BICORSPECTRAL TRANSFORM
DEFINITION, PROPERTIES, IMPLEMENTATION & APPLICATIONS

P. Duvaut 1, T. Gouraud 2

1 ETIS ENSEA, 6 rue du Ponceau, 95000, Cergy-Pontoise France; Tel : (33) 1 30 73 66 10;
Fax : (33) 1 30 73 66 67; e-mail: duvaut@ensea.fr.
2 Laboratoire d'Automatique de Nantes, URA 823 C.N.R.S., Ecole Centrale de Nantes/Université de Nantes, 1 rue de la Nog,
44072 Nantes Cedex 03-France; Tel : (33) 40 37 16 35; Fax : (33) 40 74 74 06; e-mail: gouraud @lan.ec-nantes fr.

ABSTRACT

This paper introduces a new time-frequency representation
called the bicorspectral transform BET, derives most of its
theoretical properties and details relevant applications. This
representation is devoted to non-gaussian processes either
stationary or not that exhibit non vanishing third order
moments. It is also closely related to the deterministic
correlation between the signal and its Wigner-Ville
distribution which yields efficient implementation with
almost the same numerical complexity as a Pseudo-Wigner-
Ville representation.

1. INTRODUCTION

Great attention has been paid these last years to Wigner-
Ville representations based on either higher order moments
or cumulants symbolized by WHOS [1,2,3,4]. One of the
main relevant difficulties is to reduce ,the dimensionality of
any WHOS even in the lowest third order case to display in
a three dimensional human world the non-stationarity of the
underlying non-gaussian process. Although this issue is
very crucial, there are only few works that tackle this
problem. To some extent, the present paper proposes an
alternative in the third order case but its scope is much larger
since BET that we define and thorougly study hereafter has
several interpretations. In this paper, only two of them have
been chosen : 1) First of all, BET displays the third order
properties of a stationary process in a time-frequency plane,
. which is sometimes very useful when these properties
describe a frequency behaviour like for instance in the
quadratic phase coupling. The structure of BET is not based
upon an arbitrary building of what could be such a type of
representation but on a necessary and analytical link in this
stationary environment with both the bicorrelation and the
bispectrum. 2) On the other hand, BET is nothing but the

deterministic (under l2 (Z) sense) intercorrelation between the
signal itself and its Wigner-Ville distribution (WV) [5]
which eases a lot the implementation. A third interpretation,
related to non-stationary process, can be derived. BET may
also be viewed as projection of the third order correlation or
spectrum onto a particular manifold [6]. This interpretation,
which is not discussed in this paper, justifies the use of BET
to detect HOS changes like for instance gaussian to non-
gaussian transitions.

The paper is organized as follows. In section 2, we give the
definition of BET. Theoretical properties related to points 1
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and 2 are derived and explained in section 3 for both
continuous or discrete time processes and moreover in the
context of the two interpretations. Section 4 is devoted to
the implementation and the use of BET in the charaterization
of quadratic phase coupling and non-gaussian phenomena.

2. THE BICORSPECTRAL TRANSFORM

BET is aimed to reveal the properties contained in the third
order cumulants of a zero mean non-gaussian process in a
time-frequency plane. Moreover, in our opinion, it appears
very crucial to stress on these differences between the
purpose of BET and any WHOS. This task will be
accomplished in the next section. We only focus hereafter on
the definition of BET.

In the whole paper, we assume that when x(t) is a
continuous stochastic process, it is complex valued, zero
mean, non-gaussian, with non vanishing and finite second
and third order moments. When x(t) is considered as a
deterministic signal (for instance when only a trial of a
stochastic process is retained), that all the integrals where
x(t) appears exist. The similar assumptions hold for a
discrete time serie x{n], integrals are thus replaced by discrete
summations.

With such assumptions, we define respectively the
continuous and discrete versions of BET [6]
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where xr is the windowed signal by the even window r of
length 2T (or 2M-1 for the dicrete time version).

We will give two different interpretations of BET based on
several properties established in the next section.

3. PROPERTIES OF BET

3.1. Properties of BET Related To The Third Order
Statistics In The Stationary Case

In this section, statistical properties of BET are derived to
show that it is a useful time-frequency representation to
characterize third order phenomena even in the stationary
case,

0-7803-2431-5/95 $4.00 © 1995 |IEEE



S1. If x(t) is a continuous, zero meén, complex valued,
stationary non-gaussian process, with non vanishing third
order moments, then :

. f. °
Jim_E{ i’- R (L4 D) dt }= K () @

The proof of this property is given in the appendix A.
S1bis. if x[n] is a discrete time, zero mean, complex
valued, stationary non-gaussian process, with non vanishing
third order moments, and assume that :

R (V] ¥p)=0, (Vy,v,)e {[-0.5,0.25]U0.25,0.51)
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‘OS((fl’fz) and ﬁx(vl,vz) are respectively the continous and
discrete time bispectra.

The above derivation explains the use of the factor 2 in the
definition of the discrete BET (1bis). The condition (2bis)
required to allow the existence of property S1 in the discrete
time case means, for instance, if the discrete signal has been
obtained after sampling a continuous time signal, that the
sampling rate used was twice the required rate, or that the
initial process was replaced by its analytic signal.

S2. If x(t) is a continuous, zero mean, complex valued,
stationary non gaussian process, with non vanishing third
order moments, and define the Bicorspectrum as :

b_(t.) 4 jl Kx(t,%- t) e'jzm: dt
R

with K_(T1, T9)=E{x(t+71), X(t+15), x(1)}
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then : Kx(fl,fz) = bx(t,f1 + —2-) dt

-j21tf1:dT

S3. if x(t) is a continuous, zero mean, complex valued,
stationary non-gaussian process, with non vanishing third
order moments, and define the indirect estimate of the
Bispectrum called the Bicorrelogram as:
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where a.s. stands for almost surely.
With discrete time signal, we can derive such properties as
S2 and S3 [6].

As a matter of fact, in the stationary case, the following
crucial conclusions must be drawn :

. BET is a true time-frequency representation that reveals
exactly all informations contained in the third order statistics
of a zero mean complex valued non-gaussian stationary
process (S2); its definition is not at all arbitrary since it
relies on theorems that settles it "between" the Bicorrelation
and the Bispectrum ;

. BET is (S2) an asymptotic unbiased estimate of the
Bicorspectrum and may be viewed also, after a Fourier
Transform, as an asymptotic unbiased estimate of the
Bispectrum (S1), it is also asymptotically related to the
Bicorrelation (S2) ;

. considering the same trial of a process, BET is almost
surely related (S3) to the Bicorrelation estimate and the

Bicorrelogram.
3.2. Properties of BET Related To The Bilinear

Wigner-Ville Transform

In this section, we are interested in the properties of BET (1)
(1bis) related to the classical bilinear Wigner-Ville transform
[5] (by classical, we mean not depending upon higher order
statistics). For this purpose, the signal x is assumed to be
either deterministic or a unique trial of a stochastic process.
We give hereafter the properties for a continuous signal, the
extension to discrete time series is straightforward. All
properties described below are mere consequences of
definitions (1) and (1bis) and the property WV1:

WV1. BET of a signal is proportional to the deterministic

time intercorrelation in Lz('R) or lz(z) between the complex
conjugate windowed signal and its Wigner-Ville transform
{51, for any value of the frequency.

Al -
Bxg([rf) - 2T (Wxg @ xg)(twf)
where the convolution , denoted by @, is understood with

respect to the time variable and x” is the reverse time signal.
Thus BET can be interpreted as a Pseudo-Wigner-Ville
transform [5]. This interpretation makes easier the
discretization and implementation proposed in section 4.
WV2, If a windowed signal takes non zero value only in
the time interval [t;, t;], then BET is non vanishing in the
interval : [-(t;-tp), (t;-tg)].
WV3. If x(t) is a real valued signal then :
*

Brg(tD =Byp(t-D and B, (L = Byg(tD
WV4. Time shift invariance.

~ A
If: X(0= x(t-tp), then B, (L) = B (LD.
This property is related to the non-stationary status of BET :
if the time shift invariance vanishes, it means that a change

has occurred in the signal.

WYVS5. Scale change invariance. If : x(t) 2,23

ae K™ then B, (0 =B (tD
WYV6. Stability with respect to linear filtering.

t,.
x(a), with
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X0 2 (x @ b)), then (6D =2T (B4 @ Bp(LD
where the convolution is understood with respect to the time
variable.

Up to these properties, several differences between BET and
WHOS can be drawn. First of all, althought both transforms
have the same two kinds of arguments : time and frequency.
But the number of arguments is not the same: WHOS
requires one time instant and two frequencies [1,4].
Moreover, the structure of BET is not based on arbitrary
building. Therefore, BET is not depending upon arbitrary
choices of what could be a "good" higher order Wigner-Ville
representation. This task is rather difficult as mentioned in
[2].

4. SMULATION

In this section, we are interested in an efficient
implementation and we introduce applications which show
the usefulness of this new representation.

The data we work with are assumed to be sampled and real.
Moreover, the similarity between BET and PWYV helps us to
find an efficient implementation. Indeed, the implementation
of BET is made by analogy with the second order PWV
representation.

As we show in section 3 the analytic signal can be used to
compute BET. Its use leads to write (1bis) as :

Bx,[n,v)é
5 M K . y
=i Y Y zfkenlz, fkemlz, emie T }
=-M+1k=k,

k, = min(-M+1, -M+1+4n+m, -M+1+n-m)
k= max(M-1, M-1-n+m, M-1+n-m)
z,. is the analytic signal of x_. of the signal windowed by a

rectangular window. R{.} denotes the real part of a complex.
The computational burden is equal to a PWV numerical
complexity and BET can be straighforwardly computed with
a 2.M-1 points Fast Fourier Transform FFT, by analogy
with the PWV implementation [7]. Moreover, we note that
this implementation is fit to a block data treatment, which
suits with our BET computation.

The end of this paper is dedicated to the study of examples:
the estimation of quadratic phase coupling and non-gaussian
white noise. In some sitwations, when the signal is
harmonic, non linear filters generate an harmonic component
whose frequency and phase are the sum of the initial signal
frequencies and phases. This phenomenon is called the
quadratic phase coupling and can be detected with the third
moment [2]. The cl3assical quadratic phase coupling model is

given by : y(t) = kzl exp jrv t+d,) + w(t)

where w(t) is a zero-mean white Gaussian noise and v,<v,
» V3=V +V,; &, and @, are uniform independant random
variables distributed on [0,2%] and @, verifies :

@, =0+P, 3)
®, is independent from ®, and ®, but ¢ follows the

same law. The signal y is composed of three waves, but the
relation (3) implies that the waves 1 and 2 have interacted in
a quadratic manner [2]. For 0<t<T, BET expected values for
the signal y(t) is :
Vo
1-cos(21tt(f-(vl+—2-)))
E{Byr(tf)} = exp (j2rv,») - +
TQm(f-(v,+590)

Vi
1-cos(27tt(f—(V2+—2“)))

exp (jvazt) v
TQ(E-(v 450>

The quadratic phase coupling signal BET is characterized by
two sinusoids whose frequencies are v and v5 which

v v

appear at the frequencies v1+-2—2 and v2+—21—. The figure 1

depicts an example of a quadratic phase coupling signal
whose normalized frequencies vy and v, are respectively

equal to 0,05 and 0,35.

When there is no quadratic phase coupling, we show that
BET is nul [6]. The figure 2 depicts BET of sinusoidal
signal without quadratic phase coupling. Thus, BET is a
usefull representation to characterize the quadratic phase
coupling phenomena. This result can also be reached by the
bispectrum. However, when the the signal is not stationary,
the problem of the quadratic phase coupling detection may
not be solved by a bispectrum analysis. We are currently
studying BET to non-stationary signals. The results of this
study will be presented later.

Let us consider the problem of estimating a non-gaussian
white noise process. It could be generated by passing a zero--

mean gaussian white noise E(t) through a non linear filter :

w(t) = €2(t) - E[E2(1)]. The second and the third order
moments of a such signal are not vanished. Moreover, it can
be shown that the espected value of BET is : E[B (t,V)] =

K35(t), where x3 denotes the third order moment. The figure

3 illustrates a BET estimation of this non-gaussian signal.
We notice that BET estimate does not fit with the theorical
relation. It comes from the strong variance of this time-
frequency estimator. The same phenomenon appears with the
classical bispectrum estimator.

One of the aim of BET is to give a time-frequency
representation of third order statistic of a stationary signal.
The theoretical expressions are set up in this way.
Nevertheless, we would like to use this mean in order to
detect model breaking. For this purpose, we have to give up
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to the stationary propety. BET could be a candidat to analyse
non-stationnary signals and could also be applied to detect
gaussian to non-gaussien transitions or occurence of
quadratic phase coupling.

5.CONCLUSION

In this paper, we have introduced, studied from a theoretical
standpoint and applied to relevant problems a new time-
frequency representation BET. It bears two interpretations.
Fistt of all it enables to display the third order properties of
a non-gaussian stationary process in a time-frequency plane
which is, to some extent, valuable for several non gaussian
stationary phenomena that are related to harmonics. The last
interpretation of BET, as a deterministic intercorrelation
between the signal itself and its second order Wigner-Ville
representation, yields a very efficient implementation that
show precisely how the numerical complexity of BET is
that of a Pseudo-Wigner-Ville representation.

Further works have already started that show properties of
BET in non-stationary context. This later study provides that
theorical standpoint of the using of BET for non-stationary
signal.
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APPENDIX A.

In this appendix, we derive the proof of the property S1. The
other properties can be shown with similar proofs.

Proof, Starting from (1), considering the three variables : (t,
t, v) in such a way that : T =7, t'=%-t,v=u-§ :
leadsto:

+j2mf,t £y
E{ i[ e’ PByltfi+y)dt} =

-j2w(f T+f,t)

= L‘Pr(T,t') K (te dr dt (A1)
R

where x(1,t') is the Bicorrelation of x(t) and where :

‘Pr(‘t,t') = ZLT J'r(v)r(v+t)r(v+t') dv (A2)
X

W (7,t) satisfies the 4 independent symetries :

¥ (@)=Y {t1D=Y(t-1)= ¥ (1-t,-t) = ¥ (-1,-1)
<t <

T for0<t<=t

and has a double Fourier transform that converges to a

Bidimensionnal Dirac distribution, according to the Fejer
convergence [8] : lim,  _ F(¥/(t,1)} = 3(£)8(E,) (AS)

The end of the proof comes from (A1) and (AS5).
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Figure 1 : BET of a quadratic phase coupling signal.

Figure 2 : BET of a signal without a quadrétic phase
coupling phenomenon.
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Figure 3 : BET of a white non-gaussian process.
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