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ABSTRACT

This paper develops a novel concept of higher-order mo-
ment and cumulant functions in the compress/stretch do-
main, and their corresponding higher-order spectra in the
scale domain. Then higher-order Q time-scale distribu-
tions are introduced and their properties are investigated.
The importance of the paper is to link the recently de-
veloped concept of scale signal representations with well
established and important methods of higher-order spec-
tral analysis.

1 INTRODUCTION

Scale domain signal analysis has been developed
in response to a need to analyse scale-invariant sig-

nals such as Doppler-tolerant waveforms [12, Chap.12] -

or self-similar random processes [5]. Doppler tolerant
waveforms are characterised by scale invariant instan-
taneous frequencies, while self-similar random pro-
cesses are described as having scale-invariant proba-
bilistic properties.

Recently Cohen [4] introduced the concept of scale
transform, and joint time-scale representations. The
scale transform of a deterministic transient (finite-
energy) signal z(t) for ¢ > 0 represents the orthogonal
form of the Mellin transform (MT) {2, p.254],
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while one of the joint time-scale distributions is the
Marinovich-Altes (or Q) distribution (9, 1]:
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Qz(t,c) = / z(rY/2 t) z*(r~1/? t)————dr. (2)
0
Variable ¢ € R is referred to as scale. According to [4],
scale is as important signal attribute as it is frequency.
In order to emphasise the importance of the concept
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of scale, many aspects of scale-domain analysis, such
as the scale spectrum, the Wiener-Khinchin theorem,
the uncertainty principle, have been considered so far
[4].

Higher order statistical analysis has been developed
in response to a need to examine phase relationships
in signals, separate Gaussian and non-Gaussian pro-
cesses or characterise non-linearities [10]. This paper
develops a novel concept of higher-order moment and
cumulant functions in the compress/stretch domain,
and their corresponding scale higher-order spectra in
the scale domain, following Cohen’s concept of scale.
The paper further introduces higher-order joint time-
scale distributions and investigates their properties.
The importance of the paper, thus, is to link the re-
cently developed scale representations with well estab-
lished and important methods of higher-order spectral
analysis.

2 HIGHER-ORDER SCALE SPECTRA

2.1 Deterministic signals.

The k-th order moment function of z(t) in the com-
press/stretch domain can be defined as:

mg‘)(n, e TR—1) 2 /000 z*(t)z(m t) - x(rr—1 t) dt,
(3)

and represents a numerical measure of the degree
of similarity between a signal and a product of its
stretched or compressed versions. Variables 7; € Rt
(i =1,...,k — 1) are referred to as compress/stretch
variables. If the k-th order scale spectrum of z(t) is
defined as:
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then we have:

Mz(:k)(chc?: e ,Ck—l) =
X,:_l(cl +c2+---+ Ck—l)X(Cl)X(Cz) e -X(Ck_l)
where
—]27rclnt
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represents a form of the MT. Note that X (c) defined

y (1), according to (4), corresponds to Xp=1(c). In
addition, the Q distribution in (2) can be written using
Mn=2{~} as:

Qu(t,c) = Mz{-‘b‘(TI/zt) z*(r7 /2 )}

Higher-order scale spectra are scale-invariant in the
sense that M ('(‘g t)(c) =M zft))(c), where by € R,
and ¢ = [e1,---,ck—1]. For k = 2, one obtains the
scale-spectrum M£2) (¢1) and the autocorrelation in

the compress/stretch domain, mﬁf’(n) [4].

2.2 Random Signals

For a random signal x(t) we say that it is k-th order
wide-sense self-similar (“scaling-stationary” [5]) if its
k-th order moment function

mF (1, mrmr) = B{x"() - x(t71) - - - X(t7h-1)}
(5)
or cumulant function
c&k)(ﬁ, oo, Tro1) = Cum{x*(t), x(tr1), - - -, x(t7k-1)}
(6)

defined in the compress-stretch domain does not de-
pend on the time variable t. Operator Cum{-} is de-
fined in the usual manner [10, Sec.2.2.2]. It can be
shown that the properties of cumulant functions of
self-similar processes, defined in the compress/stretch
domain, are analogous to those of the cumulant func-
tions of stationary processes defined in the usual, time-
shift, domain. For example:

Reglons of symmetry. Both m(k)(rl,---,’rk_l)

and cx (¥ (m1,-+-,Tk—1) are symmetric in their argu-
ments, and hence the following regions of symmetry
can be observed for real-valued x(t):
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For real-valued x(t), if the scale spectrum is defined
as C2(c) = My, 5 {cZ ()} then

CP(e) = CP (=0

Similarly, if the scale bispectrum is defined as
C’(<3)(Cla 02) = M2‘r1—)c1 M27-2—>02 {C;B) (11, Tz)}, then it
has the same twelve regions of symmetry as the con-..
ventional bispectrum [11, p.390].

Scalar measures. The scalar measures of a
real-valued . random signal x(t) are obtained from
csck)(n, -+, Tk—1) by taking 7y =--- = 7y = 1: vari-
ance (k = 2), skewness (k = 3), kurtosis (k = 4),
etc.

Example. Estimates of the scale-spectrum and the
normalised scale-bispectrum of a natural signal (bat
sonar echolocation pulse) are shown in Fig.1l. This
signal is non-stationary, but it appears that it is third
order self-similar (i.e. its scale-spectrum and the scale-
bispectrum are time-invariant). The peak in the nor-
malised scale-bispectrum indicates the likely quadratic
phase coupling between two signal components (rep-
resented by two strong and sharp peaks in the scale-
spectrum). Details of scale domain analysis of this bat
signal can be found in {13].

Other examples of self-similar processes are the
Wiener-Lévy process [11], [5] and the fractional Brow-
nian motion [8].

3 HIGHER-ORDER Q TIME-SCALE
DISTRIBUTION

3.1 Definition

The higher-order Q distribution (HO-QD) will be
introduced as a scale-invariant counterpart of the
higher-order Wigner-Ville distribution (HO-WVD),
recently defined and studied by Gerr [7] and Fonollosa
and Nikias [6]. We define higher-order Q distributions
as:

Q:(:k)(tvcla' - ,Ck_]_) =
My -+ My {z(aot)* z(ait) - - - z(ar-1t)}
T1—*C1 Th—1">Ck—1

where ag, @1, ---, ar—1 are functions of com-

press/stretch variables 7y, T2, - -+, Tk—1, and must sat-

isfy the following two constraints:

i=1,---,k-1)
(7

Constraint 1: ai/ap =T
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Figure 1: (a) The bat echo-locating signal (temporal rep-
resentation); (b) its scale spectrum and (c) its normalised
scale bispectrum

Constraint 2: Qg --a1--Gg—1 =1

(8)
Constraint 2 is also referred to as compress/stretch
“centering”. This choice of constraints will ensure that
higher-order Q distributions preserve and generalise
many desirable properties of the Q distribution. From

(7) and (8), it follows that:

k-1 \ "Lk
ag = (H Ti) ’
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and the expression for higher-order Q distribution be-
comes:

QW (t,c1,. .-, C-1) /0 (H tT)l/k)
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where 7 = [11,...,Tk—1]. Fork =2, eq.(9) amounts to
the definition of the conventional Q distribution given
by (2). For k = 3 eq.(9) represents the third order Q
distribution, given by:

LT . —1/3_—1/3
oty )

( 2/3 1/3) (tTl—l/BT:’Z/S)

Q(:z3) (ta Ci, 02)

e—]2n(cl ln T1+cz In72)

dT1 dT2 .

T2
3.2 Some properties of HO-QD

Relationship to the higher-order Wigner-Ville

distribution. The HO-WVD was defined as [6]:
- =
wi, ) = . (-7 ; i)
k—1 k-1
k-1
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with f = [f1,-. ., fx—1] and with limits of integral from

—00 to 0o. It is related to HO-QD as follows:

W{z(e ( a.C_) = Q({’;)(t)}(eta_c.)

Compress / stretch covariance.

k k
Q%z)(bot)}(t’g) = Q&z)(t)}(bot,g) (bO € R+)
Scale shift covariance. If the HO-QD is defined
with every second signal term complex-conjugated, i.e.

o ¢
Qg’“)(t,cl,...,c;f_l) /293 (W)
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where P;{} is a complex-conjugate operator if ¢ is even
and identity operator otherwise, then for even valued
k we have for ¢g € R:

(k) —
Q{z(t) exp(j2meco Int)} (t’ 9) -

Q(’:)(t)}(t,Q —co,¢2 + €y Ck—1 ~ Co)-

1579



Time marginal. For HO-QD defined in (9)

/ QW (¢, c)de = z* (£) 2* (8).
For definition (10) and even-valued k:

/ QW (¢, )de = [z(8)|*.

Multiplication property. The HO-QD of a prod-
uct of two signals u(t) v(t) yields:

/ QP (t,7) Q¥ (¢, ¢ — mdn
n

= QP () o Q¥ (t0)

where (;) denotes convolution in the multi-scale space.

(k) ) (¢, 0)

Mean conditional scale and the instantaneous
scale. The mean scale of the HO-QD over the
multi-scale space, at each time, is proportional to
the instantaneous scale of signal z(t) [3] ci(t) =
=t {arg[z(t)]}, i.e. form =1,...,k — 1 we have:

[, em@8 (8, 0)de

2
Sy = 26l (11)
Lo¥(t,0de K
Alternative form. The HO-QD can be expressed
using the MT of signal z(t) as follows:

QP(t,c) =

T e
Y

i=1
Then it can be shown that properties such as the scale
marginals or the convolution property are not satis-
fied. For example:

k—1
Zcz) HXC,

/tTQ"‘) (t,c)dt = X
i=1

In order to satisfy these properties, one would have

to modify the proposed definition of the HO-QD and

to sacrifice the multiplication property and the mean

conditional scale property.

A general class of higher-order time-scale dis-
tributions. Higher-order time-scale distributions
can be defined as:

PR (et e) = QP (et,0) 3y (o) Ble, 0),

where ¢(t,c) is the kernel in the time-multiscale do-
main, and (;y denotes the convolution in time.

4 SUMMARY

The paper has introduced higher-order scale spec-
tra and discussed some of their basic properties. The
concept of higher-order Q and general time-scale dis-
tributions has been developed based on the “center-
ing” condition of compress/stretch variables. The re-
sulting higher-order Q distribution preserves or gen-
eralises many of the properties of the Q distribution.
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