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ABSTRACT

In this paper, we introduce a class of stochastic processes
whose correlation function obeys a structure of the form,
E[X()X(A)]=*A"R(A), A.t>0. We refer to these
processes as second order self-similar processes. This
class of processes include fractional Brownian motion as
a special case. We define a concept of autocorrelation
and develop a spectral analysis framework via
generalized Mellin transform for the proposed class.
Additionally, we establish a relationship between the
proposed self-similar processes and generalized linear
scale invariant system theory. We give specific models
and demonstrate their ability to model 1/ f phenomena.

I. Introduction

1/f physical phenomena are often identified by
their measured Fourier spectra obeying a power law of
the form, S(f )ocl/[flb B>0. They are typically
characterized by an inherent statistical self-similarity and
relatively strong correlations between far apart
observations. Therefore, conventional models, such as
ARMA models provide poor representations for such
empirical findings. In general, the construction of long
term correlated processes are either based on the physical
origins of the 1/ f noise, such as the ones proposed by
Ziel [1] and Keshner [2] or based on the concept of
statistical self similarity, a form of invariance with
respect to changes of time scale. Fractional Brownian
motion (fBm) proposed by Mandelbrot and Van Ness [3]
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is an example of the latter one. It can be viewed as a
moving average of the white noise in which past
increments are weighted by the kernel (¢—s)"™,
0 < H <1. While fBm has become a popular framework
in variety of engineering problems involving 1/f
processes, it has a number of limitations. In particular,
due to its nonstationary structure, as yet there is no
satisfactory spectral analysis framework. Additionally,
fBm is a Gaussian process and can only be used as a
covariance model. There is a need, however, for non-
Gaussian, generative models [4].

We introduce a class of self-similar processes for
1/ f phenomena that includes fBm as a special case, yet
avoids the restrictions described above. We define a
concept of autocorrelation for the proposed self-similar
processes and developed a spectral analysis framework
via generalized Mellin transform. Additionally, we
establish a relation between the proposed self-similar
process and the generalized linear scale invariant system
theory. We give examples of specific models and
demonstrate their ability to represent long-term
correlations.

II. Proposed Class of Models

The long run properties of the phenomena gxhibiting
1/ f spectra can be parsimoniously modeled by self-
similar processes [3]. A stochastic process
{X(t),—oo<t<oo} is called statistically self-similar with
parameter H, if it satisfies the following scaling condition
X()=a"X(at), a>0 —co<i<oo, 2.1

where = denotes the equality in terms of finite joint
distributions. We interpret the statistical self similarity in
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terms of second order statistics in which the equality in
(2.1) is alternately expressed as

E[x()]=a"E[X(ar)]

E[X (0)x(s, )] = a’z"E[X (at,)x (a‘z)] ,

a>0 2.2)
For all practical purposes, we shall restrict our attention
to second order self-similar processes with finite variance.
For H = 0, second order self-similar processes with finite
variance possesses structural properties that are similar to
classical wide sense stationary processes. Moreover, they
lead to a rich class of self-similar processes with arbitrary
parameter H. Therefore, we propose the following
definition.

Definition 1: A random process {X(t),¢ >0} shall be said
to be scale-stationary if it satisfies the following
conditions.

i) E[X(1)]=constant, for all t & (0,).

o0 < 1,41, <oo.

iiy E [|X (t)|2] <oo, forall te(0,0).
i) E[X(3)X(r,)| = E[X(as,)X{az,)| for all ,1,,0>00

Scale-stationary processes allows us to construct finite

~variance, self-similar processes with arbitrary parameter
H. Such a construction is given by the following result,
which is a straightforward corollary to Definition 1.

: Define X()=t¥X(t), t>0. Then,
{X(t), t>0} is self-similar with finite variance and
parameter H if and only if {.i'(t), t>0} is scale-
stationary. [

Theorem 1

We shall call {)?(1), t>0}, the generating scale-
stationary process of {X(¢), ¢>0}. It is clear that the
correlation function of a self-similar process is related to
its generating process with the following expression.

E[X(M)X(1)] = (M)" P E[ R(A0) R ()] = AR (1),

tLA>0 (2.3)

where R(:) is a positive definite function on the
multiplicative group. In particular, for =1,

E[X(\)X(1)]=A"R,(A)=T% (%), 1>0. (2.4)

We shall call T'%(-) the basic autocorrelation function of
the self-similar process {X(), ¢>0} with parameter H.
Note that E[X(A)X(1)]=+**T%(A), #,A>0. The basic
autocorrelation function I'%(-) represents the underlying
stationary structure of the finite variance self-similar
processes defined on the positive axis. The following
theorem shows that the basic autocorrelation function is
sufficient to characterize a finite variance, self-similar
process defined on the positive axis.

Theorem 2: A function 'y () defined on the positive real
axis is the basic autocorrelation function of a self similar
process with the parameter H if and only if there exists a
nonnegative symmetric measure F on (—ee,0) so that

ri(\)= [M**dF(w), A>0. (2.5)
Proof : See [5}. OO0

As a consequence, the process has the following spectral
representation

X(t)= It"‘”*”dB(m), t>0. (2.6)

where the integral is defined in the mean square sense
and B(w) is the Brownian motion. Moreover, if F is
absolutely continuous, we have

5(@) =L (@)= [¥Hri (). @7
dw °

In the familiar terminology of engineering, the above
theorem simply states that generalized Mellin transform
with parameter H, whitens the finite variance self-similar
process with parameter H. As is well known, the output of
the linear time invariant systems driven by a wide sense
stationary processes, is also wide sense stationary. The
following theorem proves the counterpart of this fact for
linear scale invariant systems (LSI) [6] and finite
variance self-similar processes.

Theorem 3: Let h(-) be the impulse response of a LSI
system with parameter H, and {x(1),£>0} be the self
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similar process with parameter H,. If A(¢) ) is in
the space L((0,o0),dt/t), then the output

(1) = Ih(-;:}‘(x)x‘g‘,,?, for all >0 (2.8)
4]

is a finite variance, self-similar process with parameter
H +H,.
Proof 3 : See [5].00

III. Examples

Example 1: 1t is well-known that the ARMA processes

N M

oyt 4 y(t)+- -+a1t% () + 0 =Bt Y d—x(t)+- —+Byt

d¥ dr™

are obtained by driving the linear time invariant system
whose dynamics are represented by constant coefficient
ordinary differential equations by the "white noise”
processes. Similarly, there is a class of ordinary
differential equations, known as Euler-Cauchy system,
that is suitable to represent the dynamics of the LSI
systems with parameter 0 [6]. We could modify Euler-
Cauchy system to obtain a class of time varying
differential equations to represent the dynamics of the
LSI system with arbitrary parameter H. We can show
rigorously that the LSI system represented by the
Equation (3.1) yields a self-similar process with
parameter H, when it is driven by the "white noise”. We
call this process self-similar autoregressive moving
average process with parameter H (SS-ARMA(H)). For H
=0and M, N = 1, the basic correlation of the process is
given by
AT A1

E[X(t)X(tk)]-{x, 0enel (3.2)
Example 2 : Let @ be a uniformly distributed random
variable on (-=, 7). Consider the following process.

x(t) = at” cos(w, Int + @) (3.3)

We can show by direct calculation that {x(t),r>0} is a
self similar process and its basic correlation function is
given by T%(1)=(0?/2)A" cos(w, In}).

IV. Long-term Correlations and Self-Similarity

It is well-known that not all self-similar processes are
long term correlated. For our proposed self-similar process
to be long term dependent, we require the following
condition: The sum of the correlations, E[X(t+1)X(s)],

has to be infinite for each fixed ¢t>0 , ie.,

00 H
T T
tz”:['(l+?) Ri(la-?)d‘c—)oo, (4.1a)
or alternatively,
i )+ (1) 3.1)
dt
JTER)ah > . (4.1b)

0

This condition ensures relatively slow decay of the

correlations as the lag T—eo. Our simulation

experiments justifies the correlation criterion chosen.

V. Conclusion

In this paper, we introduced a class of self-similar
processes that is particularly well-suited for engineering
applications involving 1/f processes. The Figure shows
sample paths of various finite variance, self-similar
processes defined on the positive axis. The proposed
analysis framework suggests new signal processing
methods for problems involving 1/ f phenomena.
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The Figure

Sample paths of various finite variance, self-similar processes defined on -the positive real axis: (a)
x(t) = ot" cos(n/3Int +¢), @ uniform on (-x,x), H = -0.3, (b&c) First order SS-AR(H) process, (b) «=0.2,H =0.3,
(c) a=0.5,H=-0.3.
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