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Abstract

To reduce the number of parameters in the Volterra
filter a tensor product basis approximation is considered.
The approximation can be implemented much more effi-
ciently than the original Volterra filter. In addition, be-
cause the design methods are based on partial charac-
terization of the Volterra filter, the approximations are
also useful in reducing the complexity of identification and
modelling problems. Useful bounds are obtained on the
approximation error.

1. Introduction

Let {X;}7%, be real-valued random variables. The out-
put of an nth order homogeneous Volterra filter applied to
{X;}7L, is a random variable

m

Y= > hlk,...

ky ..o kp=1
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where k, referred to as an nth order Volterra kernel, is
deterministic and is real-valued. If E[X?"] < o0, j =
1,...,m, then it follows from Hdlder’s inequality that
E[Y?] < oo. Throughout this paper, such moment
conditions are assumed whenever necessary. Without
loss of generality h is assumed to be symmetric. That
is, for every permutation (7(1),...,w(n)) of (1,...,n),
h(kn1y, .. kn(n)) = h(ki,..., kn), and hence there are
(""",?‘1) degrees of freedom, or parameters, in k, where
("t™=1) is the binomial coefficient.

The large number of parameters associated with the
Volterra filter results in significant computational obsta-
cles except for modest values of m and n. Therefore, it is
desirable to reduce the number of free parameters in the
Volterra filter. Efforts to reduce Volterra filter complexity
are proposed in [2, 4, 5, 7]. In this paper, the number of
degrees of freedom, and hence the number of free parame-
ters, in the Volterra filter is reduced using a tensor product
basis approximation.

The tensor product basis approximation is a linear

* Supported by Rockwell International Doctoral Fellowship
Program. ! Supported in part by the National Science Founda-
tion under Award MIP-895 8559, Army Research Office under
Grant DAAH04-93-G-0208, and by the National Institute of
Health under Grant NINCDS #NSR 0116436.

1569

combination of tensor products of simple basis vectors.
This method was originally introduced in [7] and the
present paper represents a refinement of the ideas pre-
sented there. The approximation proposed in [2] is related
to the tensor product approximations considered here, but
only applies to quadratic filters. In [4, 5], the Volterra fil-
ter is approximated using a cascade structure composed of
linear filters in series with memoryless nonlinearities. This
approximation is quite different from those studied here.

There are several motivations for the tensor product
basis approximations proposed herein.

1. Tensor product arises naturally in Volterra filters
2. Provides efficient implementation

3. Linear relationship between basis vectors and input
4. Can be designed from incomplete prior knowledge

The fact that there is a linear relationship between the ba-
sis vectors and the input makes the analysis of the approx-
imation relatively straightforward and is used to establish
useful approximation error bounds. With regard to point
4, it is shown that an appropriate tensor product basis
can be designed from incomplete prior knowledge of the
Volterra filter characteristics and corresponding approxi-
mation error bounds are derived. Such approximations are
useful in identification or modelling problems when partial
prior information is available.

The tensor product basis approximation and approx-
imation error formulation are given in sections II and III
respectively. Two methods for the design of the temsor
product basis are presented in sections IV and V. The
mean-square approximation error is bounded for each case.
In section VI, the implementational complexity of the ap-
proximations is compared to the complexity of the original
filter and it is shown that a significant savings is obtained.

2. Volterra Filter Approximations

The following convenient notation is employed. If
A € IR?*P| then define AM = A and recursively define
A = A=) & A for n > 1, where ® is the Kronecker
(tensor) product [1]. Next let h be an m™-vector con-
structed from the elements of the nth order Volterra ker:
nel hand X = (Xi,..., Xm)T so that (1) is re-written as
Y =hTX™,

Now let P denote the orthogonal projection matrix
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corresponding to an r < m dimensional “approxima-
tion” subspace f C IR™ and consider approximating h
by h = P{™h. Such an approximation is called a rank
r™ tensor product basis approximation to h. Note that
¥ = h7X(™ = hTP(MX(™ = hT(PX)™. Hence, the
output of the approximated Volterra filter is equivalent to
the output of the original filter driven by the approxima-
tion of the original input. The advantage of using h instead
of h is that h has fewer degrees of freedom. If P = uuT,
where U is m x r, then

7 =@ U)X = 03X, (@)

where hy = (U™)Th and Xy = UTX is r x 1. Also
note that h is constrained to lie in the space spanned by
the columns of U(™). The vector hy possesses same type of
symmetry as h and hence has only (**7,7!) degrees of free-
dom. Clearly, the reduction in complexity can be dramatic
if r € m.

3. Approximation Error

The mean square output error is expressed and
bounded as

(Qh)T (QEX™X™71Q7) (Qh),
Q| t{QEX™MX™T1QT],  (3)

E[(Y - V)]

IA

where Q = I(™ — P(") is a projection matrix. From (3) it
is easily seen that if null(Q) denotes the null space of Q,
then the error is zero if either of the following conditions
hold:

Al henull(Q)
A2. range(X™) C null(Q) w.p.1.

Of course, in practical situations Al and A2 may not be
exactly satisfied. Deviations in both conditions result in
a non-zero output error that is characterized by the 2nth
order moments of the input process.

The bound in (3) leads naturally to the following two
bptimizations problems:

1) Find P to minimize |Qhl|} subject to
rankP <r < m.

2) Find P to minimize tr(Q E[X(MX™7]QT)
subject to rankP < r < m.

Both optimizations are nonlinear and in general a closed
form expression for a minimizer is not known to exist. The
optimizations may be approached numerically; however, in
general the problems are non-convex and finding a globally
optimal solution may not be feasible. Hence, two subopti-
mal approaches are considered. One method attempts to
minimize the filter error ||Qh||3 and the second method is
based on the input error tr(Q E[X(")X(")T] Q7). In addi-
tion, the designs only require partial knowledge of the filter
or input respectively. Explicit error bounds are obtained
in each case.

4. Filter Error Design

In this section, a method for designing the tensor prod-
uct basis using the filter error |Qh||3 criteria is examined.
This design approach is in general suboptimal and only re-
quires prior knowledge of the filter’s support in the Fourier
domain.

Let H denocte the n-dimensional Fourier transform of
the kernel & and H denote the Fourier transform of the
kernel approximation % (corresponding to h = P(™h). Let

B = [—'w2,—w1] U [wl,wz],

denote a frequency range of interest, where 0 < w1 < w2 <
1/2. Consider approximating H on B™ £Bx---xB.
e’

n times

Define w(f) = (1,e™, ... ei(m-127/)H

2 [ w(fyw¥
we /B (W (Fdf, (9

and let f = (fi1,..., fn).
Proposition 1:
N2 e
Jon HH(£) = H(E)df =
hT[W(n) + PmW ) pn) _ ptriw(») _ wp(rh,
The proof of Proposition 1 involves some simple Kronecker
product manipulations and is given in [8]. Proposition 1
leads to the bound,
Y2
Jon 1H(E) — H(E)[?df <
|hi3 ”w(n) + PmW P _ pr)w() _ W) pn)),

Thus, for this approximation a logical choice for P is an
orthogonal projection matrix that minimizes

”W(ﬂ) + PRIWpR) _ p(ryw(n) _ W(")P(n)ll2_

Theorern 1: The orthogonal projection matrix Prw
corresponding to the subspace spanned by r eigenvectors
associated with the r largest eigenvalues of W minimizes

[W(™ 4 PW P _ ptiw(™ _ WP,

over all orthogonal projection matrices of rank < 7. Fur-
thermore,

W 4 PO WOVPEY, — PO, W) — WP o
= W~ W = WP,z

A proof is given in [8] and is established using Kro-
necker product properties and the classical results of [3, 6]
regarding low-rank matrix approximations. In general,
the approximate rank of W is proportional to the time-
bandwidth product 2m(w2 — wi1). The results easily ex-
tend to more general sets than those with the form of B.
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The following corollary, also proven in [8], bounds the er-

ror between h and }{
Corollary 1: Ifh = PE,T‘V)Vh and |H|? < € off B™, then

Ilh = B3 < JhfAT™ Arga + ¢,

where A1 > -+ > Ar > A1 2 --¢ 2 Am 2 0 are the

eigenvalues of W.

5. Input Error Design

Define the norm of any ¢ x 1 random vector Z, ¢ > 1,
as ||| = tr(E[ZZ7))!/2. Then

tr(QEX™XMT1QT) = |QX™M)? = X — (X)),
)

Hence, the objective of this section is to find a rank r or-
thogonal projector P so that PX is a good approximation
to X in the sense of (5). Consider the following bound on
the input approximation error (5).

Theorem 2: Let P be an orthogonal projection ma-
trix on IR™. If X is a random m-vector with finite 2nth
order moments, then there exists a constant 0 < an < 0©
such that

X — (PX) ™2 < naa XD |1X = PXP2.

Theorem 2 is established by repeated application of
Hélder’s inequality and Kronecker product properties. A
complete proof is given in [8]. The bound of Theorem 2
suggests the choice of P that minimizes ||X — PX||®? =

tr(R — PR — RP + PRP), where R £ E[XX”] is the aun-
tocorrelation matrix of X. Using the eigendecomposition
R = UDUT and defining C = UD*/2UT write

tr(R — PR —RP +PRP) = tr((C—CP)7(C-PC)),
IC - CP|, (6)

where || - ||r is the Frobenius matrix norm.

It is easily established using the result in [3] that a
rank r orthogonal projection matrix minimizing (6) is the
projection matrix P, r onto the subspace spanned by the
eigenvectors associated with the r largest eigenvalues of
C or equivalently R. Theorem 2 implies that if P,rX
is a good approximation to X, in the mean-square sense,
then (P,rX)™ may be a good approximation of X in
the same sense. Of course, “how good” depends on an
and ||X||. In general, to determine ay,, knowledge of the
second and 2nth order moment of the each individual ran-
dom variable in the vectors X, P,aX, and (I - Pra)X
is necessary. However, if X is a linear transformation of
independent, symmetric random variables, then an is ob-
tained independent of P, r.

Theorem 3: 1f X is a linear transformation of a vector
U of independent r.v.’s U,...,U, with symmetric distri-
butions Fi,..., Fy, then a constant satisfying the inequal-
ity in Theorem 3 is given by oy = max;=1....q ¥n,F;, where
an,F; is a positive number satisfying

E[U?] < onr EUI", i=1,...,q (7)

Theorem 3 is proven by showing that, under the stated

assumptions, every random variable of the form Z =
S ¢ U satisfies E[Z®"] < a, E[Z?*]". If C is an ar-
bitrary m x ¢ matrix and P is a projection matrix on IR™,
then the elements of X = CU, PX, and (I - P)X are sim-
ply linear combinations of the U process. Hence, an, as
defined above, may be used in Theorem 2. The complete
proof is also in [8].

Notice that under the assumptions of Theorem 3, the
bound in Theorem 2 is computed using only the second
order moments of X and the bounds (7) relating the 2nd
and 2nth order moments of the independent U process.
The bounding constant o is easily determined for many
common types of distributions. For example, if X is jointly
Gaussian mean-zero, then a, = %’,;—l' i U,,...,Uqarein-
dependent, symmetric, uniformly distributed random vari-
ables, then on = 23n

n+1l"’
To quantify the quality of this approximation, consider

. n)_ n .
the ratio Xt m Ez))("; A . In the spirit of Theorems 2 and

3, it is of interest to establish bounds on this ratio in terms
of the second order moments of X and the constant an.
The details of the following two corollaries are found in [8]

Corollary 3.1: If X satisfies the hypothesis of Theorem
3, then

X" — (X))
[ X2

X=X — PX?
Yo BN

where @, is the constant defined in Theorem 3. If
E{X?}=0¢% i=1,...,m, then

<nan

XM — (PX)™)f?

wt X = PXJP?
Bk '

X2

<nanpm

Corollary 3.1 follows by noting that [[X(™]? >
5™ E[X?]", by Jensen’s inequality. The next corol-
lary requires a stronger assumption, but also considerably
tightens the bound.

Corollary 3.2: If X = CU where the random vari-
ables U = (Ui,...,Uy)T are independent and symmetric
and C = {ci,;} is m x ¢ with ¢;; > 0, then

(n) _ (n))|2 _ 2
X (sz) I < van X P}H ’
X X1 :

where o, is defined in Theorem 3.

This corollary is proved by exploiting independence
and using Jensen’s inequality.

6. Implementational Complexity

The main source of computational burden for the
Volterra filter arises in the number of multiplications re-
quired per output. To study the relative computational
efficiency of the tensor product basis approximations, the
number multiplications required per output using the rank
r™ tensor product approximation h and original Volterra
filter h is compared.
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Two cases are considered. First, the “parallel” imple-
mentation of h, in which all products of the input are
computed for every output. To form all unique n-fold
products of X requires (n — 1)(**7~') multiplications and
another ("*7~!) multiplications are required to compute
the output. Second, consider the “serial” implementation,
in which the input is a time-series. In this case, after ini-
tialization, only products involving the new input need be
computed at each time step. The number of such products
is given by the number of ways n1 > 1L,n2,...,2m 2 0
may be chosen so that 2:7;1 ni = n or equivalently the
number of ways n1,7nz,...,2m > 0 may be chosen so that

o, mi=mn-—1 whichis ("1, Hence, the number
of multiplications required for a “serial” implementation
of his ("*77Y) + (n — D("I1?).

To study the complexity of the approximation h re-
call that the output is computed with a ("*%7!) param-
eter Volterra filter hy and the transformed data vector
Xy = UTX, where the columns of U span an r-dimensional
subspace Y C IR™ (2). To form Xy and all unique prod-
ucts in X{™ requires rm + (n — 1)("*77!) multiplications
(the first term corresponds to the transformation and the
second corresponds to formation of the necessary prod-
ucts). With these products in hand, the output is com-
puted with an additional ("*},~!) multiplications. Note
that due to the required transformation, no savings is avail-
able in the serial implementation using the approximation.

The exact ratios, denoted np and 75, of the number of
multiplications using h versus h, for parallel and serial im-
plementations respectively, are given below.

_ #mults(h)
= mults(h)

rm 4+ n("t771)
n("tThy

(8)

and

_ #mults(h) _ rm + n(*t771)
= #mults(h) ~ (PP + (0 - (V) (9

n—1

To gain some insight into the behavior of these ratios
as a function of subspace dimension, consider the follow-
ing large m asymptotic analysis. Assume that n > 2 and
let 0 < p < 1 be fixed. Let r = [pm], the smallest in-
teger greater than or equal to pm. The number p is the
ratio of the approximation subspace dimension to m. Us-
ing (1+ -27)"" " ~ €™, (1+"1L_1-)"'H/2 ~ 1, and Stirlings

m-—1

formula m! ~ v/2r m™t1/2 ¢~™ it follows that
O rm__ P (10)
(n+77711—1) P (n+71;1—1) ‘ mn—2 *

Using these approximations

#mults(h) _(n= Dip

= #mults(h) mn=2 e (11)

and

_ #mults(fl) nlp _—
s = FHmults(h)  mn-? tnen = e (12)
In the special case of quadratic filters, further simplifica-
tion is obtained by applying the method proposed in [2].

7. Conclusions

The tensor product basis Volterra filter approximations
considered in this paper offer considerable savings in terms
of implementation complexity. Also, because the design
methods are based on incomplete prior knowledge of the
filter (i.e., frequency support) or input (i.e., second order
moments only) such approximations are also useful in re-
ducing the complexity of Volterra filters for identification
and modelling problems. Error bounds are derived that
quantify the mean square output error of such approxima-
tions.
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