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ABSTRACT

We aim to recover a multi-frequency component nonstationary
signal from its broadband noise-corrupted measurements using a
time-varying optimal Wiener filter. A new method for realizing
the Wiener filter is proposed, based on our multiresolution
parametric spectral estimator (MPSE). Conventional estimators
for contaminated AR processes are all fixed resolution based
methods, which are mostly suitable for stationary situations. In
nonstationary applications, the estimator must not only locate the
signal components in frequency but also in time. MPSE offers
better time resolution than conventional fixed resolution
parametric estimators. The MPSE frequency band splitting
reduces necessary model orders and improves SNR. The Wiener
filter is given in terms of the MPSE parameters. Experiments
show that the performance of the MPSE Wiener filter lies much
closer to the ideally possible performance than for a Wiener filter
based on fixed resolution AR modeling.

1. INTRODUCTION

The optimal linear filter commonly known as the Wiener filter
is the best estimator based on the minimum mean-square error
criterion. Given the spectral characteristics of signal and noise, it
provides the optimal estimate of the signal. Optimal filtering has
played an important role in SNR enhancement, signal detection
and tracking, spectral estimation and system identification.

Several difficulties arise in applying optimal filtering theory to
signal estimation. The major difficulty is that the design of a
Wiener filter requires a priori knowledge of the statistics of the
data to be processed, such as spectral density or correlation
functions. Such statistical characteristics of signal and noise are
usually unknown, and it becomes impossible in many practical
cases to design and implement the optimal Wiener filter.
Moreover, the performance of the filter depends greatly on the
accuracy of the information on which the design of the filter is
based. The filter is optimum only when the statistical
characteristics of the signal and noise match the information used
for design. Estimation errors may bring about serious distortion in
the estimated signal. Therefore, the key to successful optimal filter
design is to properly estimate the spectral or statistical
characteristics of the input data.

The theory of Wiener filtering is not restricted to stationary
environments. If the signal or noise is nonstationary, a time-
varying optimal filter can be derived according to the time-varying
characteristics of the input data [1]. The nonstationarity will make
the spectral estimation more difficult, since most spectral
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estimation techniques are based on the assumption that the
process is (wide sense) stationary. The solution to overcoming the
nonstationarity is to apply a proper time window. A trade-off
between estimation variance and nonstationarity inference is
required when the window length is selected.

We aim to recover a nonstationary signal via a time-varying
Wiener filter. Here the signal is considered to be a muiti-
frequency component nonstationary process which has been
corrupted by broadband white noise. Thus, the signal can be
modeled as a time-varying multi-pole (high order) AR(p) process.
Contaminated with white noise, the observed data can be modeled
as a nonstationary ARMA(p, p) process [2, 3].

Several techniques have been proposed to estimate the model
parameters for a contaminated AR process, such as the noise
compensation method [2], general ARMA estimators, high order
AR modeling [3], or prefiltering of the data to reduce the
observation noise [4].

A new approach to time-varying Wiener filtering is presented in
this paper. The process consists of a two-stage procedure. The first
stage is to estimate the statistical characteristics of the
nonstationary data using our Multiresolution Parametric Spectral
Estimator (MPSE) [5] in conjunction with a noise compensation
method. The second stage is to design the Wiener filter based on
the estimated MPSE parameters, for subsequent filtering of the
contaminated data. These two stages can run concurrently, so that
an adaptive Wiener filtering operation is established.

2. WIENER FILTERING

Consider a real AR(p) process s, , represented as:

Sp =_Zaisn-i TXy M)

where {a;: i=1,2,...,p} are the AR parameters, and x,, is the
normally distributed white noise excitation with zero mean and
variance a-i. The Power Spectral Density function (PSD) of the
time series s,, is defined by:
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Complex conjugation is denoted by *, and - indicates taking the
reciprocal. Since s, is real, the AR parameters are also real, and
the roots of A(z) are either real or occur in complex conjugate

pairs. We assume that the signal process is stable, with the roots
of A(z) located inside the unit circle.
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The observed time series y,, can be written as:

Yn=5pt+e, 3
where e, is the observation noise, which is a normally distributed
white process with zero mean and variance o?. Under the

assumption that the processes e,
PSD of y, is defined by:

and x, are independent, the

a, +02A(2)A (2™

P, (2)=Py(2)+o “4)
ADA™ (™)
Using the optimal Wiener filter [1] we can write
Pys(z)  P/(2)
Hop(z)=3-—=2= )
FETP(2) Py
where P, (z) is the cross-PSD between y, and s, . The second

equality results from e, being independent, so that

Pys(2) equals Py(z).

Substituting (2) and (4) into (5), the optimal Wiener filter can
be written as:

and x,

o3
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Note from (4) that the denominator of (6) can be spectrally
factored.

H op(2) = ©

ol +0lA(z)A*(z")=B(z)B"(z™") )
Using (7), the optimal Wiener filter can be rewritten as:
ol o ] o
Ho = X = X X 8
)= B G [B(z) [B‘(z“')] ®

Equation (8) is the ideal optimal Wiener filter for recovering a
white noise contaminated AR(p) process. Since the filter is a
noncausal IR filter, it is not physically realizable. However, if a
block of observations {y,:n =01, N -1} is available, and the
block length N is much longer than the transient of o, /B(z), the

noncausal IIR filter in (8) can be approximated well by an off-line
procedure.
The procedure consists of two steps. First the observations

{ynin=0]1,--,N -1} are filtered by the causal filter & /B(z),
and the output denoted v,. Next, the anticausal filter
o, [B"(z™") is implemented by filtering ¥,, the time-reverse of
the sequence v,, with o, /B(z), creating 5,, and finally time
. The latter creates 5,, the optimal Wiener filter
estimate. Approximation errors are caused by the transients at
both ends of the filtered data. Using (7) the filter parameters of
o, [B(z) can be computed from A(z), o, anda?, or their
estimates.

When the signal s,

reversing s,

its AR
parameters and spectrum are time-varying. This requires the
continuous availability of the time-varying information. This
makes the design of the time-varying Wiener filter difficult.

is a nonstationary process,

However, the time-varying characteristics of the signal can be
tracked by a spectral estimator with a proper time window. Within
the window, the signal is considered to be pseudo-stationary, such
that the noncausal IR Wiener filter can be used directly. The
time-varying characteristics of the signal are updated in each
sample interval while the time window slides along the time axis.
The window should be short enough to ensure pseudo-stationarity.

3. SUMMARY OF MPSE

An optimal Wiener filter or its approximation can be fully
determined from the signal AR parameters, the power of the

excitation process o-,zc and the power of the observation noise o2,

or their estimates. This information can be obtained, for example,
with the Burg or Recursive Least Squares algorithms (RLS).
When the signal is time-varying, a time window needs to be
introduced in order to preserve pseudo-stationarity. There are two
major difficulties when the signal consists of multi-frequency
components. First, a multi-frequency component signal
corresponds to a high order AR process. To estimate the
parameters, the window width needs to be at least three times the
AR model order for the signal [3]. Second, since the signal
contains several frequency components, each signal component
can have different time-varying rates and patterns. It is hard to
find a fixed time window suitable for all frequency components.
MPSE was developed to overcome the window problems in
estimating the model parameters of a time-varying signal.

The MPSE process starts by splitting the signal frequency band
into lower and upper halfbands using lowpass and highpass filters.
The output of the highpass filter is forwarded to an AR spectral
estimator with a sliding window. The result is the first octave
band spectrum. The output of the lowpass filter is decimated by a
factor of two, and sent to the next processing block. The processor
recursively divides the entire frequency band from high to low
frequency into multiple octave bands [5, 6].

The output rate of each subband signal is different. The first
octave band has the highest rate, equal to the sample rate of the
original signal. The second octave band has an output rate one half
that of the first octave band, and its time scale doubles compared
with the first octave band.

In practice, the signal often occupies only a few of the octave
bands. The ‘empty’ subband signal components can be treated as

zero-th order processes and used to estimate G2, the variance of
the observation noise. Note that the bandwidth of the i-th octave
band is a fraction (27 ) of the entire frequency band, so that the
estimated noise power a(,i) 2 in the i-th octave band needs to be

re-scaled, i.e. 62 =2'¢®?,

An advantage of MPSE is that a high order AR process can be
decomposed into a number of lower order AR processes; this
improves the statistical performance of the estimation since there
is less cross-talk between the component processes. For the time-
varying case, MPSE provides much better frequency tracking
capability than the conventional AR estimator. It also improves
frequency resolution, by increasing SNR in each subband, and
time resolution, since lower order processes require shorter data
window widths.
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4. TIME-VARYING MPSE WIENER FILTER

The MPSE parameters are the parameters of the noise-
contaminated observation y,. To improve the corrupted

estimates, a noise compensation technique [2] can be used in
conjunction with MPSE. The noise compensation method is based
on the relation between the autocorrelation functions of y, and

s, - That is, the estimated autocorrelation function of the signal

can be determined using R, =ﬁy—&31. The autocorrelation

functions can be used either directly, to construct an FIR type
Wiener filter, or indirectly, to determine the signal component
parameters for constructing an IIR type Wiener filter or to estimate
the time-varying spectrum of the signal component.

In situations where the SNR is extremely low, a two step
estimation stage can help to reduce the noise level in the final
results. The first step is to prefilter the noise-contaminated signal
component in each non-empty octave band using an FIR type
Wiener filter at the subband level. This estimation-step optimal
filter is constructed from the autocorrelation functions estimated
by MPSE with noise compensation. The output from the first step,

§f,i), an estimate of the signal component, is then used to re-

estimate the AR parameters of the subband signal component.
Since the SNR condition has been improved by the prefiltering
step, the re-estimated signal parameters are less corrupted by
noise than without the prefiltering step. However, extra distortion
can be caused by prefiltering, which usually produces over-
smoothed estimates. The choice of a one or two step estimation
stage is based on the trade-off between further noise reduction and
extra distortion. Under high SNR conditions, a one step estimation
stage yields better results than a two step estimation stage. The
experimental results presented in the next section were produced
by a two step estimation stage.

If the waveform of the signal s, is of major interest, the
optimal filtering has to be performed over the entire frequency
band to prevent waveform distortion caused by different group
delays. After the signal has been decomposed into the multi-
frequency components in each octave band, the AR polynomial
A;(2), for the j-th octave band can be represented as :

P
4;=] Ja-pyz™

i=1l

j=1..M 9)

where p; is the order of the signal component in the j-th octave

band, and M is the total number of octave bands.

The collection of all roots p;; is exactly the set of roots for the
overall AR polynomial A(z), except that the root positions have
been changed due to decimation. To reconstruct A(z), the roots in
each octave band need to be projected from its octave band to the
entire frequency band. Writing the roots in (9) in polar form:

Pij =7y exp(jOy) (10)

the projection from the octave band to the entire frequency band is
reflected in

pl=y <.exp(j———gij (11)
y y 2j—1
;4(z) can then be approximated as
. M Py
io=T][Ja-#5™ (12)
j=1 i=l
From (1) and (3) we see
P P
Zax‘yn—i =xn+zaien—i (13)
i=0 i=0
Taking the variance on both sides of (13) yields
P 2 P
E> aypi| |=0%+07 ) lai (14)
i=0 i=0

where we used the condition that the excitation process and the
observation noise are zero mean white and independent processes.
Finally, the excitation noise of the signal process can be
approximated as

N

"’5=%Z
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where N is the number of data points in the time window. After
)i(z),&f ,and &2 have been estimated, the Wiener filter for the

entire frequency band can be constructed.

Equations (12) and (15) provide approximations for
constructing the second stage optimal Wiener filter for the entire
frequency band, based on the estimates in each subband, as
obtained in the first stage. When the poles of the signal
components are located close to the unit circle, the approximation
is a good representation of the actual signal model; otherwise,
some error in the estimation of excitation noise power may result.
The performance of the Wiener filter depends much more on
correct pole position than on correct noise powers. If the spectral
estimator can track the changes of the signal components and
provide correct pole positions over time, the signal components
will pass the filter. A filter constructed from incorrect pole
information can cause serious distortion, even filter out the actual
signal. The gains and bandwidths centered at each pole are
controlled largely by the excitation noise and the observation
noise. With noise compensation, over-estimation of the
observation noise power will produce over-smoothed results

(narrower passband). It may also cause #,(0)— &% <0 (negative
PSD).

5. SIMULATION EXPERIMENTS
Performance is illustrated using a time-varying AR(4) process

in wideband noise, with SNR=0dB (Fig. 1). The poles of the
AR(4) process vary according to

1567



P12(n) =099 exp[+722(0.063+0.038 cos(0.01 1n)]
P3.4(n) =099exp[+27(0031-0019cos(001 )]

in (cycles/sample). The excitation noise of the AR process is a
normally distributed process with zero mean and variance

o2 =10"*. The global Wiener filter realizations used are all

noncausal IIR approximations. Given the true time-varying
parameters, the ideal Wiener filter (designed from perfect
knowledge) provides 10.46 dB of noise reduction (Fig. 2), thereby
setting the upper limit to performance. The Wiener filter updated
from a conventional fixed resolution windowed RLS algorithm [7]
achieved 4.09 dB of noise reduction (Fig. 3), whereas the MPSE
based Wiener filter realized 8.73 dB of noise reduction (Fig. 4).
The MPSE Wiener filter is constructed by projecting the estimated
parameters for each sub-band process from its octave band to the
global frequency band.

This experiment shows that the performance of the MPSE
based Wiener filter lies much closer to the ideally possible
performance than for one based on conventional fixed resolution
AR modeling.

(16)

6. CONCLUSION

Compared with conventional fixed resolution parametric
estimators, the MPSE method offers better time resolution. The
frequency band splitting procedure used in MPSE reduces
necessary model orders and improves SNR, and thus reduces
estimation errors. The MPSE parameters can be used to directly
update the time-varying Wiener filter. Experimental results show
that the performance of the MPSE based Wiener filter lies much
closer to the ideally possible performance than for one based on
the usual AR modeling.

7. REFERENCES

1. Charles W. Therrien, Discrete Random Signals and
Statistical Signal Processing, Prentice Hall, 1992.

2. J. S. Lim and A. V. Oppenheim, “Enhancement and
Bandwidth Compression of Noisy Speech,” Proc. IEEE,
Vol. 67, pp. 1586-1604, Dec. 1979.

3. S. M. Kay, Modern Spectral Estimation: Theory and
Application, Prentice Hall, 1987.

4. J. S. Lim, “All Pole Modeling of Degraded Speech,” IEEE
Trans. Acoustics, Speech, and Signal Processing, Vol.
ASSP-26, pp. 197-209, June 1978.

5. M. Xie and A. A. (Louis) Beex, “Multiresolution
Parametric Spectral Estimation,” 26th Southeastern
Symposium on System Theory, Athens OH, 10-12 March
1994, pp. 432-436.

6. M. Xie and A. A. (Louis) Beex, “Multiresolution
Parametric Spectral Estimation,” IEEE Trans. on Signal
Processing, submitted July 1994.

7. B.-Y. Choi and Z. Bien, “Sliding-Windowed Weighted
Recursive  Least-Squares Method for Parameter
Estimation,” Electronics Letters, Vol. 25, No. 20, pp.
1381-1382, 1989.

1 .
08} i

0.4} &
~02t% (H

n

(o) & x

0-3_
= 02l
aai ¥ ¥ .
IR A RN B

08

o I
time in samples
Fig. 1. Signal x(n) (solid) and observation y(n) (dotted).
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Fig. 2. Signal (solid) and ideal Wiener filter estimate (dotted).
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Fig. 3. Signal (solid) and fixed resolution AR Wiener filter
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Fig. 4. Signal (solid) and MPSE Wiener filter estimate (dotted).
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