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ABSTRACT

We propose a Best Basis Algorithm for Signal Enhance-
ment in white gaussian noise. We base our search of
best basis on a criterion of minimal reconstruction er-
ror of the underlying signal. We subsequently com-
pare our simple error criterion to the Stein unbiased
risk estimator, and provide a subtantiating example to
demonstrate its performance.

1. Introduction

A universal wavelet basis is more than one could achieve
given the plethora of classes of signals. Adapted wavelet
bases have consequently been proposed {1,7,9] to alle-
viate this problem. In a sense, an adapted (best) basis
search is intimately tied to noise removal (or signal en-
hancement).

To address an inherent variability of the entropy-
based basis search [9] in noisy scenarios, a new class
of algorithms have recently been studied in [3] and
also in [6]. Donoho and Johnstone [3] base their algo-
rithm on the removal of additive noise from determin-
istic signals. The signal is discriminated from the noise
by choosing an orthogonal basis which efficiently ap-
proximates the signal (with few non-zero coefficients).
Signal enhancement is achieved by discarding compo-
nents below a predetermined threshold. Wavelet or-
thonormal bases are particularly well adapted to ap-
proximate piece-wise smooth functions. The non-zero
wavelet coefficients are typically located in the neigh-
borhood of sharp signal transitions. It was shown in [4]
that thresholding at a specific level a noisy piece-wise
smooth signal in a wavelet basis, provides a quasi op-
timal min-max estimator of the signal values.

When a signal includes more complex structures
and in particular high frequency oscillations, wavelet
bases can approximate it with only a few non-zero co-
efficients. It then becomes necessary to adaptively se-
lect an appropriate “best basis” which provides the best
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signal estimate by discarding (thresholding) the noisy
coefficients. This approach was first proposed by John-
stone and Donoho [3] who proceed to a best basis search
in families of orthonormal bases constructed with
wavepackets or local cosine bases.

This paper focuses on a more precise estimate of the
mean-square error introduced by the thresholding algo-
rithm, which leads to a new strategy of searching for
a best basis. The precision of the estimate is analyzed
by calculating the exact mean square error with the
help of the Stein unbiased risk estimator in a Gaussian
setting.

Next section gives a brief review of noise removal
by thresholding and of wavepacket orthonormal bases.
In Section 3, we derive the error estimate of our signal
enhancement procedure. In Section 4, we compare the
optimal best basis search criterion to a suboptimal one,
and provide a numerical example of the resulting algo-
rithm to enhance underwater signals (whale signals) in
Section 5.

2. Noise Removal by Thresholding

Let s[m] be a deterministic discrete unknown signal
embedded in a discrete white Gaussian noise,

z[m] = sm] + n[m] with n[m] ~ N(0,0%), (1)

and m = 0,---,N. Let B = {W,}1<p<n be a basis
of our observation space. The thresholding procedure
consists of discarding all inner products < z,W, >
above T, in order to reconstruct an estimate § of s.
Let K be the number of inner products such that

| <z,W, >|>T. Suppose that < z, W, > are sorted
so that | < z, W, > | is decreasing for 1 <p < N,

K
§[m] = Z <z, W, > Wylm].

n=1

The threshold T is set such that it is unlikely that

| < n,W, > | > T. For a Gaussian white noise
of variance o2, {< n,W, >}i<p<ny are N indepen-
dent Gaussian random variables with the same vari-
ance. The value assumed by the maximum of {| <
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n,Wp > |*}1<p<n is “202log N” w.p.1 [5]. To guar-
antee that the thresholded coefficients always include
some signal information, one chooses T = 20%log NV,
which was shown to be the optimal threshold from a
number of perspectives [4,6]. The vectors W, forp < K
generally have for weights non-zero signal coefficient
| <8, W, > |

If the energy of s(n) is concentrated in high ampli-
tude coefficients, such a representation can provide an
accurate estimate of s(m). Wavelet bases are known
to concentrate the energy of piece-wise smooth signals
into a few high energy coefficients [2].

When the signal possesses more complex features.
one has to search for the basis which would result in
its best compressed representation. In [3] a proposed
to search for a basis, amounted to that which resulted
in the best noise suppression among all wavepacket or
local cosine bases.

‘We thus have a collection of orthonormal bases
(B* = {W;}lspSN)iEI among which we want to choose
the basis which leads to the best thresholded estimate
5. We consider two particular classes of families of or-
thonormal bases. Trees of wavepacket bases studied
by Coifman and Wickerhauser [9], are constructed by
quadrature mirror filter banks and are composed of sig-
nals that are well localized in time and frequency. This
family of orthonormal bases divides the frequency axis
in intervals of different sizes, varying with the selected
wavepacket basis. Another family of orthonormal bases
studied by Malvar [7] and Coifman and Meyer (1] can
be constructed with a tree of window cosine functions.
These orthonormal bases correspond to a division of
the time axis in intervals of varying sizes. For a dis-
crete signal of size N, one can show that a tree of
wavepacket bases or local cosine bases include more
than 2V bases, and the signal expansion in these bases
is computed with algorithms that require O(NV log N)
operations, since these bases include many vectors in
common. Wickerhauser and Coifman [9] proved that
for any signal f and any function C(z), finding the best
basis B which minimizes an “additive” cost function
over all bases

N
Cost(f,B')=>_C(| < f,W; > *)

n=1

requires O(N log V) operations.

In this paper we derive an expression of C(z) so
that Cost(z,B*) approximates the mean-square error
|s — §||? of the noise removal algorithm. The best noise
removal basis is then obtained by minimizing this cost
function.

3. Error Estimation

We first derive with qualitative arguments an estimate
of the error ||s—3|| and then prove that this estimateis a
lower bound of the true error. Since z{m] = s[m]+n[m],
following the thresholding and assuming that K terms

are above T', the error is

K N
s =32 = "1<nW,>P+ > [<s.W,>[%
n=1 n=K+1

(2)
Since n[m] is a random process, K is a random variable
dependent upon n(-). Given that n[m] is a Gaussian
white noise of variance o2, < n,W, > has a variance

o2. To estimate ||s — 5|2, we obtain for a given K,

K
E{) (<n,W,>)?| K}~ Ko*,
n=1
and
N
E{ Y <z W,>P|K}=
n=K+1
N N
Sooi<sWo> P+ Y E{(<n,W,>) | K}
n=K+1 n=K+1

Since the basis includes N vectors
E{ls -3 | K} ~e2=—-No?+2Ks*+
Yok B{l <z, W, > 2| K} (3)

The estimator €2 can be written as an additive cost
function (7). Let us define

_fu if |u]>T
Clu) = { +202 if |u| < T,
N
€ =-No®+E{D_C(l <z, W, > )}
n=1

Among a collection {Bi}i of orthonormal bases, we pro-
pose to use this estimated error to search for the best
basis B which minimizes Y~ C(| < z,W, > [?),
i.e..minimize the conditional error estimate. With this
cost function, we are able to efficiently compute the
best basis in wavepacket and local cosine tree bases,
with O(N log V) operations. .

In the following theorem we show that the condi-
tional estimator €2 of ||s — 3||? is biased and compute
the biais by using the Stein unbiased risk estimator [8].
As will be shown in Section 3, the bias will not, how-
ever, have a bearing on the optimality of our search, if
a threshold T is judiciously chosen.

Theorem 1 Let {W,}i1<p<n be an orthonormal basis

of our observations space. If n[p] is a discrete Gaussian

white noise of variance o2, the biais of the estimator is

N
Ells-3l°) - E[&] = 2To*) ($(T—<s,W,>) +
$(-T— < 5, W, >)) (4)
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with
1 u?
B(u) = e 27,
27
Proof: First define,
Ye(1p) ML {|n,|>IT}
9me) = —MpI{m,i<T)) (5)

with 7, ~ N (nsp,0?%), with 7, being the true signal
coefficient, in 7, = 7sp + 7np and I} is an indicator
function constrained by its argument. We then use

v(Mp) = 7p + 9(mp),
to obtain the following,

N N
E{> (1) = nsp)?} = D E{(np = msp) + (9(np))"}

= PI—\}
= Y E{nZ,}+2E{nnp9(np)}

p=1
+E{g2(np)}- (6)

Using the property (8],

E{nnpg(np)} = /nnpg(nnp + "lsp)d’(nnp)d")np

—o? / 9(Mnp + Nsp) @ (Mnp) AN

= 0'2/gl('rlnp'*'nsp)‘»b(nnp)dnnpv

and calling upon derivatives in the generalized (distri-
butions) sense, one can write,

d
iy Lm0} = 0,

with §y denoting the Dirac impulse, and which we can
in turn use to derive

fg Tnp +"73p) (nnp)dnnp

- fI{In,,|<T}¢(nnp)d77np +T (¢(T nsp) + ¢( -T - nsp))

After susbtitution of the above expressions back into
Eq. 6, we obtain,

N
E{Z('Y m) = Nep)?} = €2 +2Ta% Y ($(T —nsp) +
p=1 p=1
$(—=T — nsp)).
|
This theorem proves that the expected value of our
conditional estimator €, is a lower bound of the mean-
square error. The biais of the estimator is explained by
the assumpotion that all signal components are always
above | T | in (2) and (3). We thus did not take into
account the errors due to an erroneous decision (i.e.

signal + noise component may indeed fall below the
threshold)

4. Ewvaluation and Numerical Results

To analyze the performance of our error-based criterion
for a best basis selection, we first numerically compute
biais for different classes of signals by using Eq. (4). We
then apply this criterion to choose a best basis among
wavepacket bases, and subsequently to enhance signals
of biological underwater sounds.

Let us consider a class of signals s[p] that are well
approximated by K coefficients of the orthonormal ba-
sis {Wpli<p<n. We associate to the inner products
< 8, W, > a distribution density given by

o0) = YK o(6) + - h(6).

This may be interpreted as on average, out of IV coef-
ficients there are N — K zero-coefficients and K non-
zero coefficients whose values are specified by h(§). The
smaller the proportion K /N the better the performance
of the noise removal algorithm. Fig. 1 shows the mean-
square error E||s — 3||?] as a function of T, for different
values of K/N. In these numerical computations, we
suppose that the signal to noise ratio is of 0dB. The
parameters of h(f) are adjusted so that the total signal
energy is equal to the total noise energy. The mini-
mum expected value of the unbiased risk is obtained
for a value of T which is close to 202 log N1. The value
of this optimal T does not remain invariant and is a
function of K/L. Fig. 1 also gives the expected er-
ror E[e2] computed with our estimator. The precision
of this lower bound increases when the poportion of
non-zero coefficients K/L decreases. For small values
of T the biais is very large but it is considerably re-
duced at T = 20?log N which corresponds to the typi-
cal threshold we choose in our pratical algorithm. For
this threshold, the suboptimal error estimator provides
a resonable estimate of the mean-square error.

Note that the bias term in Eq. (4 assumes a prior
knowledge of the signal coefficients, which is clearly not
the case. This difficulty can be partially lifted by ob-
taining rather an upper bound of the bias. This is car-
ried out by picking the Maximum Likelihood Estimate,

namely the observation itself (i.e. the noisy coefficient)

at the given point. We show in Fig. 2 that the effect
on the risk can be rather drastic in comparison to the
optimal risk.

We show in Fig. 3 a noisy whale sound? with its
best enhanced representation, using the proposed algo-
rithm.

5. References

(1] R. Coifman and Y. Meyer. Remarques sur I’analyse
de Fourier & fenétre. C. R. Acad. Sci. Série I, pages
259-261, 1991.

(2] I. Daubechies.
supported wavelets.
XLI1:909-996, 1988.

IN=100.
2This data originated at NUSC.

Orthonormal bases of compactly
Com. Pure and Appl. Math.,

1563



[3] D. Donoho and I. Johnstone. Ideal denoising in
an orthogonal basis chosen from a library of bases.
Oct. 1994. preprint Dept. Stat., Stanford Univ.

[4] D. L. Donoho and I. M Johnstone. Ideal spatial
adaptation by wavelet shrinkage. preprint Dept.
Stat., Stanford Univ., Jun. 1992.

[5] B. Gnedenko. Sur la Distribution Limite du Terme
Maximum d’une Serie Aleatoire. Annals of Mathe-
matics, 44(3):423—453, July 1943.

[6] H. Krim and J.-C. Pesquet. Robust multiscale
representation of processes and optimal signal re-

construction. In Time Freq./Time Scale Symp.,
Philadelphia, PA, 1994.

[7] H. Malvar. Lapped transforms for efficient trans-
form subband coding. IEEE Trans. Acoust., Speech,
Signal Processing, ASSP-38:969-978, Jun. 90.

[8] C.M. Stein. Estimation of the Mean of a Multivari-
ate Normal Distribution. The annals of Statistics,
9(6):1135-1151, 1981.

[9] M. V. Wickerhauser. INRIA lectures on wavelet
packet algorithms. In Ondelettes et paquets
d’ondelettes, pages 31-99, Roquencourt, Jun. 17-21
1991.

1.2 T T T 1 T T T
.Unbiased Risk Estimate, 10% of total interval

{{=em,  ~iUnbiased Risk Estimate, 20% of total interval. ..
. /'/ g -

"""

Risk

Figure 1: Risk estimates for various compression ratios
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Figure 2: Comparison of MLE-based Risk and subop-
timal Risk
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Figure 3: Biological Sounds of a whale



