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ABSTRACT

The scale transform introduced by Cohen [1] is a spe-
cial case of the Mellin transform. The scale transform
has mathematical properties desirable for comparison
of signals for which scale variation occurs. In addition
to the scale invariance property of the Mellin trans-
form many properties specific to the scale transform
have been presented[l]. A procedure is presented in
this paper for complete implementation of the scale
transformation for discrete signals. This complements
discrete Mellin transforms and delineates steps whose
implementation are specific to the scale transform.

1. INTRODUCTION

Signal scaling arises in many situations. For example, a
waveform sampled at different rates will generate dis-
crete signals which differ, but are related by a scale
factor. Scale changes are induced by a number of real
world phenomena such as the Doppler effect.

The Mellin transform is defined as (3]

F(s) = /0  foye-tdt (1)

The scale transform is the specific case where s = 1/2—
jc. An equivalent definition
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presented by Cohen [2] yields the scale transformation,
D(c), of the time domain signal f(t). The scale trans-
form may also be viewed as the Fourier transform of
the function fi(t) = f(e*)e/? [1].

dt 2)

D(e) = 71_2.; /_ Z fu(t)e=itat 3)
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Exponential distortion transforms a scale factor in
the time variable to a translation in scale. That is, the
energy normalized scaled signal \/af(at) yields
Jaf(aet)et/? = f(ettina)e(t+na)/2 = £, (t +Ina). The
Fourier transform in equation (3) converts the transla-
tion term into a phase factor. Two signals normalized
to equal energy which differ only in scale have coef-
ficients of scale identical within a phase factor. Thus,
the scale invariance property of the scale transform per-
mits direct comparison of signals in which scale is not
consistent.

Zwicke and Kiss [4] presented two discrete imple-
mentations of the Mellin transform. Since properties of
the Mellin transform vary as a function of s in equation
(1), detailed discrete implementations for all Mellin
transforms cannot be presented in a unified manner.
An implementation for a specific case of the scale trans-
form has not been presented. In this paper, a com-
plete implementation of a discrete scale transform is
presented. A method for resampling uniformly spaced
samples to exponential spacing is included.

2. DISCRETE IMPLEMENTATION OF
SCALE TRANSFORM

Signals are commonly sampled at uniformly spaced in-
tervals. Implementation of the scale transform in equa-
tion (3) requires exponential sampling of f(t) to-yield a
uniformly spaced fi(t). Since discreteness of the data
is assumed, interpolation is required to find the signal
value at the exponentially spaced locations. For exact
results under DFT sampling assumptions, sinc inter-
polation is the correct method. All other interpolation
methods will modify the existing frequency components
or introduce extraneous ones.

A signal uniformly sampled at or above the Nyquist
rate may be exponentially sampled using the following
method.

1. Select the exponentially spaced sample locations.
Assuming that the original signal is sampled at
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the Nyquist rate, the maximum exponential in-
tersample distance must not exceed the uniform
sample spacing. For an original signal consisting
of N data points, the exponentially sampled ver-
sion is adequately sampled using N log N points.[5]

Exponentially spaced locations may be selected
by setting t = N and t = N — 1 as sample loca-
tions. The geometric factor between these loca-
tions is k = N/(N—1). To obtain the previous lo-
cation, divide N —1 by the factor, k. Divide again
by k to obtain another sample location. Continue
this procedure until a total of N log N exponen-
tially spaced sample locations are found.

. Using the FFT, calculate the Discrete Fourier
Transform (DFT) of the samples, f(n), of the orig-
inal signal:

N-1 —j2wkn
Fk)y=3_ f(n)e™" . (4)
n=0

The resulting F (k) are equally spaced samples of
the frequency domain representation of the signal

[61.

. Interpolate the signal using the coefficients pro-
duced by the FFT. These coefficients define a
unique signal in continuous-time. The continuous-
time signal, f(t), is reconstructed by
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The reconstructed signal, f(t), has the same value
as f(n) at locations wheret =nfor0 <n < N.
Values of f(t) for locations between the coinci-
dent points are perfectly interpolated with sinc
functions. This reconstruction implicitly assumes

that f(n) = f(n mod N).

Exponentially spaced samples of f(t), are desired.
The inverse FFT yields equally spaced samples
and, therefore, cannot be used. The summation
in equation (5) must be performed for each of
the Nlog N exponentially spaced sample loca-
tions. Thus, this is a computationally intensive
procedure. However, fast algorithms for the en-
tire procedure are of great interest and should be
pursued.

. Evaluate the signal multiplied by e!/? at the ex-
ponentially spaced sample points of step 1. The
result is treated as the uniformly spaced signal
fx(n) which represents a discrete version of the

fe(t) in equation (3). This relabeling of the signal
provides the exponential distortion of time that
yields the scale invariance property.

5. Obtain the scale domain representation D(c) by
performing a DFT on fi(n). Since the samples,
fi(n), are considered to be uniformly spaced, an
FFT may used in place of the DFT for faster
processing.

6. Account for the contribution of the signal at time
zero. f(0) corresponds to fr(—oo). Since fr(t) =
f(e*)e*/?, it is evident in the continuous case that
the time domain signal makes no contribution at
time zero. In the discrete case, however, each
sample represents a finite time interval. f(0)
of the original data sequence represents the sig-
nal between time zero and the first exponential
sample point. Since this interval has a non-zero
weighting in the computation of fi(t), the contri-
bution of the value at time zero must be included.

Using the calculation method of [4], Do(c) the
contribution of f(0) to the D(c) value may be
found. Unfortunately, a simple result does not
appear to be evident. For each scale, the value re-
quired to provide scale coefficients of equal mag-
nitude for square pulses of varying length must
be computed. The result is dependent on the
number of exponential samples used.

The Dy(c) value is added to the D(c) values al-
ready computed to achieve the final result. This
final result is the discrete scale transform of the
original signal samples, f(n).

3. EXAMPLES

We present two examples Whlch illustrate the operation
of the Fourier based discrete scale transform. In each
case, a root signal is compared to a scaled version of
the root signal. The first signal examined is a single
cycle sinusoid. The second signal is a square pulse.

3.1. Single Cycle Sinusoid

Consider the single cycle sinusoid and scaled version
depicted in figure 1.
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Figure 1: Single cycle sinusoid (solid) and scaled ver-
sion (dashed)

The exponentially sampled versions of the signals
are shown in figure 2. It requires 462 exponentially
sampled points to represent the 100 point original sig-
nal.
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Figure 2: Exponentially sampled single cycle sinusoid
(solid) and scaled version (dashed). Horizontal axis is
linear in sample number to show exponential nature of

sampling

The scale transform magnitudes calculated by the
discrete method described above are depicted in figure
3. Slight variation occurs due to discrete sampling and
implicit assumptions associated with the FFT.

3.2. Square pulse

In this example, two square pulses of equal energy,
beginning at time ¢ = 0 are compared. Figure 4 shows
the signals and the exponentially sampled versions. The
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Figure 3: Magnitude of the scale transform for the sin-
gle cycle sinusoid (solid) and its scaled version (dashed)

analytical result for the scale transform of a unit mag-
nitude square pulse beginning at time zero and ending
at time tg is

3
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Consider the square pulses depicted in figure 4. The
exponentially sampled versions shown in figure 5.
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Figure 4: Square pulse (solid) and scaled square pulse
(dashed)

In the exponentially sampled signals there is signifi-
cant “ringing” due to the implicit assumption that the
signal is bandlimited. Because the exponential sam-
pling method utilizes the DFT, there is the implicit
assumption that the signal is bandlimited and periodic
in the length of the window. Thus, the exponentially
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sampled versions of the signal have evidence of periodic
components related to the length of the window.
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Figure 5: Exponentially sampled square pulse (solid)
and scaled square pulse (dashed). Horizontal axis is
linear in sample number to show exponential nature of

sampling
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Figure 6: Magnitude of the scale transform for the
square pulse (solid) and scaled square pulse (dashed)

Magnitudes of the scale transform of these two sig-
nals are very similar. The phase, however, can be used
to differentiate between signals of the same structure.
Figure 7 shows the real part of the scale transforms for
the square pulses.

4. CONCLUSIONS

The scale transform represents the scaling of a signal as
a phase shift. A discrete implementation for the scale
transform has been presented. This straightforward

Figure 7: Real part of the scale transform for square
pulse (solid) and scaled square pulse (dashed)

implementation brings scale invariance property of the
Mellin transform and specific desirable properties of the
scale transform [1] to discrete data.

The rapidly evolving concepts of scale open the
door to many interesting and useful theoretical devel-
opments and applications. In order to take advantage
of this, a viable discrete scale transform is required.
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