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ABSTRACT

Evolutionary spectral theory provides a means for defin-
ing 2 decomposition of signal energy jointly over time and
frequency for processes which exhibit an oscillatory behav-
ior. The oscillatory model of behavior effectively assumes
that a process is composed sinusoidal components with
slowly-varying time-dependent amplitudes. In this paper
we expand evolutionary spectral theory by allowing the fre-
quency of the sinusoidal components to vary with time. An
estimator of this generalized spectrum is described and ex-
amples are presented that illustrate the relative merits of
this new approach.

1. INTRODUCTION

Since most signals display some form of non-stationarity,
time-dependent spectra have been employed to describe the
behavior of signals. Traditionally, non-stationary spectral
definitions result from generalizations of wide sense station-
ary spectral theory. The short time Fourier transform and
Bilinear Distributions (BD) [1] are examples of this gener-
alization.

A second approach to defining a time-dependent spec-
trum is presented by Priestley [2]. Priestley shows how
processes composed of slowly varying amplitude modulated
carriers, termed oscillatory processes, can possess an evo-
lutionary spectrum. We refer to Priestley’s spectrum as
the Oscillatory Evolutionary Spectrum (OES). Recently,
Priestley’s work has been expanded to include a dual defi-
nition and models that assume linearly varying Frequency
Modulation{FM){3].

In many cases the assumption that a signal is composed
of amplitude modulated carriers is useful, however, not all
signals are best characterized by this assumption. Consider
FM signals. One would expect that such signals are bet-
ter described in terms of sinusoids with varying frequency.
Motivated by the desire to better characterize FM signals
through the evolutionary spectral theory, we define the vari-
able frequency or generalized evolutionary spectrum by ap-
plying the concept of Instantaneous Frequency (IF).

Cohen provides a detailed chronology of the development
of concept of IF[1]. IF is defined as the rate of change
of phase of the analytic signal. Where the analytic signal
is obtained from the original signal by subtracting off the
Hilbert transform of the signal.

The goal in defining IF is to obtain from signals involving
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modulation of the frequency of a sinusoid an expression that
indicates the frequency of the sinusoid at every instance.
However, only under certain conditions does the preceding
definition provide a value that is physically meaningful(l,
4, 5]. IF defined as the derivative of the phase of the signal
does provide a value that is physically meaningful for the
so called pure FM signals[5], an example of which being

z(t) = Aejw(t)’, (1)

where A is a constant and v is real valued. Later we em-
ploy the pure FM signal with the understanding that the
derivative of the phase corresponds to the frequency of the
signal at each instance.

In evolutionary spectral theory, many time domain pro-
cesses admit the representation,

5(t) = / 8(t, 1)dZ (%) @)

where {Z(7)} is an orthogonal increments process. Priest-
ley showed that when the process is oscillatory, that is, a
collection of components that are highly localized in fre-
quency, the representation becomes

z(t):/A(t,w)e’de(w) (3)

and the spectral definition follows from the power of each
sinusoid as

Soms(t,w) = |A(t,w)[*. (4)
We next describe a generalization of this spectrum.

2. GENERAL OSCILLATORY MODEL

In this section we introduce a model of process behavior
which generalizes the oscillatory model. With the oscilla-
tory model, processes are assumed to be composed of pha-
sors with time-dependent amplitudes and where the radian
frequency of these phasors remains constant throughout
time. The aspect of the oscillatory model that is generalized
by this new model is the behavior of the phasor. Under the
generalized model, processes are described in terms of pha-
sors with slowly varying amplitude and an instantaneous
frequency that varies with time in an arbitrary fashion. To
construct such models, we first discuss the transformation of
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a deterministic signal and show how to construct a transfor-
mation that decomposes a signal into phasors whose instan-
taneous frequency varies in a desired way. Next we argue
that allowing slow amplitude variations of the phasors leads
to a valuable time-frequency description of a signal.

2.1. A Generalized Fourier Transformation

As our goal is to generalize the behavior of the time-
dependent phasor, we will write the transformation of a de-
terministic signal in terms of phasors in as general a fashion
as possible. The most general form for the transformation
of z(¢) in terms of time dependent phasors is:

X(A9) = / ” z(t)e TN gy, (5)

where 9 is some real valued function. The notation X(A; )
is intended to emphasize that X depends explicitly on . As
we consider different forms of the function ¢, this notation
will be adapted.

We now ask the question; under what conditions is (5)
invertible? Clearly, this is a desirable property since z(t)
can be recovered from X (A; ¢) only if the transformation is
invertible. The transformation of (5) is invertible if ¢ is of
the form:

B(t,2) = M + p(t) + g(), ()
where p and ¢ are real valued functions. We now show that
the inverse of (5) is then given by:

#(t) = % /m X(x;9)e? BV, (7)

To see that ¢ in the form of (6) is sufficient for invertibil-
ity, substitute (5) into (7):

F(1) = % / / 2(r)e DTN N=RO=a] 40y ()

From here, we see that ¢ cancels out and after changing the
order of integration we find that

i:(t)=2—17r-/ z(r)e_j(p(t)—p(r)l/ e M="lgndr. (9)
—c0 —o0

Performing the inner integration yields the desired result:

i) = /oo z(r)e IPO=PMIg(4 _ 1y4r

z(t). (10)

We now argue that the transformation of (5) is invert-
ible in general only if ¥ is of the form of (6). Consider the
case where p were to depend on A. In this case, the pha-
sors involving p would not come out of the inner integral
of (9) and hence the transformation would not in general
be invertible. Similarly, if ¢ were to depend on ¢, then the
phasors involving ¢ would not cancel in going from (8) to
(9) and again the transformation would not in general be
invertible.

As a result, the transformation pair that will be consid-
ered here is

X(Ap, q) - / z(t)e—J[/\t+P(‘)+9('\)] dt, (11)

o0

with inverse

:z:(t) = 21_7r/ X(/\;p, q)eJ[A‘+P(‘)+Q('\)]dA (12)

o0
The goal of this discussion is to investigate the role that the
product At and the functions p and ¢ play in time-frequency
analysis. Suppose that

X (A5, 9) =278(X — o), (13)

then
o(t) = e [rot+2(1)+a(R0)] (14)

or equivalently, z(t) is a time-dependent phasor with in-
stantaneous frequency:

w=1IF(t) = Ao + p'(2) (15)

where the prime indicates differentiation with respect to the
argument. In light of the earlier discussions on IF, by spec-
ifying p we are able to control the trace of a basic element
in the time-frequency plane.

To understand the role of ¢ in this transformation, con-
sider the same example as above; It is clear from (14) that ¢
adds a time-invariant phase component. Since the spectrum
is ultimately defined in terms of the magnitude square of
the envelope, see (21), adding a constant phase component
to the envelope will have no affect on the spectrum.

Finally, to understand the role of the product At, consider
once again the example from above. If Ay were allowed
to vary in (14), the instantaneous frequency of the basic
element would shift in frequency. That is, the At product
shifts a basic element in frequency.

Notice that if ¢(2, A) = A¢, then (5) reduces to the Fourier
transform. We refer to the transformation

X(A;p) = / g (t)e I e+P(] gy (16)

—a0

as the Generalized Fourier Transform (GFT), the inverse of
which is given by

z(t) = % / X(X;p)etPetpdlgy (17)

In the next section, this transformation is used as a basis
for obtaining a generalized spectral definition.

2.2. The Generalized Oscillatory Evolutionary
Spectrum

We next motivate the generalized oscillatory model by
means of an example. To develop this example we first
consider the deterministic signal of equation (14). Intu-
itively, we expect that the time-frequency description of the
frequency modulated signal of {14) is zero everywhere ex-
cept along the line of the instantaneous frequency where the
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time-frequency description remains constant [6]. We next
consider the effect of multiplying this signal by a window. If
the window varies slowly in time, then a desirable result of
a spectral definition is that for the windowed example, the
amplitude of the spectrum is proportional to the amplitude
squared of the window. We now consider modifications to
the evolutionary spectral theory which will allow a spec-
tral definition that possesses such a property. The spectral
model just described is similar in spirit to Cohen’s work on
defining BDs that are concentrated along arbitrary lines in
the time-frequency plane[6].

In defining this evolutionary spectrum we assume that
the non-stationary process admits the representation of (2).
The difficulty with defining a time-frequency decomposition
from this representation lies in the physical meaning of the
variable v. In the case of the oscillatory model Priestley de-
scribed conditions on the family of functions which ensured
that this dependent variable has the physical interpretation
of frequency. We now describe conditions on the family of
functions which ensure that this dependent variable has the
physical interpretation of an instantaneous frequency shift
such as that of Ao in (14).

We proceed by expressing the family of functions,
{#(t,¥)}, in a fashion which is consistent with the GFT.
Throughout this discussion it is assumed that p of (16} is
an arbitrary yet fixed function of time. We write

é(t,v) = C(t, y)e? MR (18)

where the function A(7) is selected so that the magnitude of
the Fourier transform of the envelope, C(t,v), with respect
to t, assumed to exist, has a maximum at the zero frequency.
The goal in making this assignment is to ensure that the
envelope is dominated by the DC component and hence
A(y) may be interpreted as shifts in frequency.

If A(7) is a singular valued function of v, ther a suitable
variable substitution can be performed thereby enabling us
to write

o(t) = / ” C(t, AP gz(y) (19)

o0

We obtain the spectral definition as an obvious conse-
quence of the energy density of the process,

E{jz()[*} = / Ct, M) dA. (20)

-0

This expression provides a decomposition of signal energy
which after appropriate transformation can be interpreted
in time and frequency. The necessary transformation fol-
lows from the instantaneous frequency of a signal compo-
nent, (15). The Generalized Oscillatory Evolutionary Spec-
trum (GOES) defined with respect to the family of functions
#(t,A) = C(¢, A)e?+PO] s given by

Scoes (t,w;p) = |C(t,w —p' (). (21)

Observe that if p(t) is constant, then the GOES reduces
to the OES. Below we describe a means of estimating this
spectrum.

3. SPECTRAL ESTIMATION

As a result of the of the similarity in the derivation of
the OES and the GOES, estimators of the OES can be
adapted to serve as estimators of the GOES. We consider
modifications to the evolutionary periodogram estimator of
the OES[7]. The Generalize Oscillatory Evolutionary Peri-
odogram (GOEP) estimate of the time-dependent envelope
is given by:

M-1 N-1
Clt, p) =D Bi(m) Y Aulm)a(m)eFAH#L - (29)
{=0 m=0

where {fi(n)[l = 1,..,M;n = 0,...,N} is a set of M or-
thonormal basis functions on n = 0,..., N which capture
the time-dependent variations of the envelope C(t,A). The
spectral estimate follows from the spectral definition as

Sgoppltwin) = HCHw-P@IF. (29

where the multiplicative constant % was introduced by
Kayhan to provide appropriate normalization.

To visualize the estimation process, consider that the in-
ner summation of the estimator of (22) can be thought of
as a projection of the complex demodulated signal onto the
basis functions. The outer summation recombines the basis
functions using the results of the earlier projections.

4. EXAMPLES

For this example we employ three signals, a sinusoid, a lin-
ear FM and a sinusoidal FM. These signals are intended to
illustrate the relative merits of a variety of models and are
respectively given by:

zi(n) = ™ for n=0,..,127
2(n) = 5+ P
Ia(n) — 6‘7[32 cos{ %%)-l--rrn] (24)

In Figure 1 we provide the time-dependent spectral es-
timates of the three example signals under three spectral
models. In each case nine Fourier basis functions were em-
ployed and the value of p for the various models is given
in the figure. From these examples, we conclude that each
signal can be thought of as possessing slowly varying am-
plitude if the model is selected properly. Or in other words,
the content of the signal determines which spectral model
will provide the best estimate.

5. CONCLUSION

Evolutionary spectral theory is not limited to processes with
slowly varying time-dependent frequency content. We have
shown that by generalizing the spectral model to allow the
possibility of varying the frequency of Priestley’s sinusoid,
the class of processes that evolutionary spectral theory can
successfully be applied to increases significantly.

In defining the generalized spectrum, we allow for an in-
finity of spectral models, each of which is best suited for
a specific signal type. The act of defining an infinity of
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spectral models suggests that, like stationary spectral the-
ory, the spectral model for a non-stationary process should
depend on the signal.

We have provided an estimator for this generalized spec-
trum and demonstrated using examples the suitability of a
selection of models to a variety of signals.
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