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Abstract—The nonstationary Wiener filter (WF) is the
optimum linear system for estimating a nonstationary sig-
nal contaminated by nonstationary noise. We propose a
time-frequency (TF) formulation of nonstationary WFs for
the practically important case of underspread processes.
This TF formulation extends the spectral representation
of stationary WFs to the nonstationary case, and it al-
lows an approximate TF design of nonstationary WFs. For
underspread processes, the performance obtained with the
approximate TF design is close to that of the exact WF.

1 INTRODUCTION

We consider the following estimation problem {1]: A non-
stationary, zero-mean random signal s(¢) with known au-
tocorrelation function r,(t,t') = E[s(t)s*(t')] is contami-
nated by nonstationary, zero-mean, additive noise n(t) with
known autocorrelation function r,(t,t') = E[n(t)n*(t')]
(€[] denotes the expectation operator). The signal and
noise processes are uncorrelated, £[s(t)n*(t')] = 0. Based
on the observation r(t) = s(t) + n(t), we form an estimate
5(t) of the signal s(t) using a linear, generally time-varying
(LTV) system H with impulse response h(t,t'),!

3(t) = (Hr)(@t) = / h{t, t)r(t)dt .
tl
The optimum filter H, minimizing the mean-square error
Elle(t)|?], where e(t) = s(¢) — 3(t), is known as the (non-
stationary) Wiener filter (WF),

H, & a.rgxginé'[]e(t)ﬁ] V¢t

It is shown in [1] that H, is a solution to the equation
Ha(R.g +R‘n,) =Ra (1)

where R, and R., are the autocorrelation operators of s(t)
and n(t), respectively, i.e., the linear operators whose ker-
nels are the known autocorrelation functions 7,(t,t') and
ra(t,t'), respectively. Furthermore, the autocorrelation op-
erators of the signal estimate §,(t) and estimation error
eo(t) = s(t) — 3,(t) obtained with the WF H, are given by

R;, = H,R,, Re, =H.,R.. ()

Stationary processes. For wide-sense stationary pro-
cesses s(t) and n(t) with power spectral densities P, (f) and
P,(f), respectively, the WF H, is a linear time-invariant
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system [1, 2]. It follows from (1) that the frequency re-
sponse H,(f) of this system is given by

Ps(f)
Ps(f) + Pa(f)

(assuming existence of this expression). With (2), the sig-
nal estimate 3,(t) and the estimation error e,(t) are sta-
tionary processes with power spectral densities

Ho(f) = 3)

Pu(f) = Bl )P = gl @
Pulf) = BN Pulh) = gl )

This frequency-domain formulation allows an intuitively
pleasing interpretation and a simple frequency-domain de-
sign of stationary WFs.

Outline of paper. This paper extends the frequency-
domain formulation and design of stationary WFs to the
practically important class of “underspread” nonstationary
processes [3]. After a discussion of nonstationary WFs in
Section 2, Section 3 proposes a time-frequency (TF) formu-
lation of nonstationary WF's which is based on the Wigner-
Ville spectrum of nonstationary processes [4, 5] and the
Weyl symbol of linear operators [6]-[8]. In Section 4, this
TF formulation is used to develop an approximate TF de-
sign of nonstationary WFs. Computer simulations show
that, for underspread processes, the performance of the
approximate WP is close to that of the exact WF.

2 NONSTATIONARY WIENER FILTERS

We first discuss some properties of the nonstationary WF
defined by (1). Since s(t) and n(¢) are uncorrelated, the au-
tocorrelation operator of the observation r(t) = s(t) + n(t)
equals R, = R, + R,. Hence, (1) can be rewritten as
H,R, = R;. The operator R, is self-adjoint and posi-
tive semidefinite [1]. Let us define the observation space
S- as the range R[R.] of R, [9]. &, is spanned by
all eigenfunctions ux(t) of R, corresponding to positive
(i.e. nonzero) eigenvalues Ar. Let N, denote the dimen-
sion of S, (i.e., the number of positive eigenvalues, which
may be infinite). From the Karhunen-Loéve expansion [1]
r(t) = Y0 reuk(t) with E[lrel?] = A > 0, it follows
that the realizations of r(¢) are elements of the observation
space S,. We note that S, = §; US, with the signal space
Ss = R[R.] and the noise space Sn = R[Rn].

Full-rank or rank-deficient process. We call the ob-
servation r(t) a full-rank process if &, = L2(R) where
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L2(IR) denotes the space of all square-integrable (finite-

energy) signals. Here, the inverse of R, exists, and the
WF is obtained by solving HoR, = R, as

H, = R.R! =R,(R, + R.)"".

If, on the other hand, r(¢) is rank-deficient in the sense that
Sr C L2(IR), then the inverse of R, does not exist, and
the WF as defined by H,R, = R, is ambiguous. We can

partition the total signal space £L2(R) as £2(R) = S, US;}*,
where S+ is the orthogonal complement space of S, 9].
A special solution of H,R, = R, is the “minimal !

H™™ which suppresses all signals that are orthogonal on
the observation space S,

(HMMZ) () =0 forall z(t) € S7.

The minimal WF is given by
H{™" = R,R¥ = R,(R, + Ra)*, (6)

where R¥ = (R, + R,)¥ is the pseudo-inverse of R, &9{]
From the minimal WF, all oth_er solutions of H, R, = R,
can be derived as H, = H™™ + X P, where X is an
arbitrary linear operator and P; denotes the orthogonal
projection operator on the complement space S*. Different
W¥s H, are identical for input signals z(t) € S, but in
general different for z(¢) ¢ S.; this difference, however,
does not influence the mean-square error since r(t) € S;.
Indeed, the autocorrelation operators of the signal estimate
and error signal obtained with H, can be shown to be

R;, = H,R, = H™YR, = R,(R; + R.)*R,, (7)
R., = H,R, = H™MYR, = R,(R, + R.)*R,,; (8)

hence, they equal the autocorrelation operators obtained

with HS™™ | It can furthermore be shown that the signal
estimate obtained with the general WF H, is an element
of the signal space, while the error signal is an element of
the intersection of the signal and noise spaces:

Bo(t) € So,  €olt) = 8(t) —3o(t) € SaNSn. (9)

These results will now be reformulated in the TF plane in
an intuitively appealing manner.

3 TIME-FREQUENCY FORMULATION

Weyl symbol and spreading function. Our TF for-
mulation of nonstationary WF's will be based on a TF rep-
resentation (“time-varying frequency response”) of linear
operators (LTV systems) known as the Weyl symbol (WS).
The WS of a linear operator H is defined as [6]-[8]

LH(t,f)=/h(t+%,t-—%) e~ 2T dr  (10)

where h(t,t') is the impulse response (kernel) of H. The
Fourier transform of the WS is the spreading function [10]

SH(T)V) = }-i—'"ff—"—f{LH(t)f)}

T T —j2nvt
= —_t - = dt 1
/:h(t+2,t 2)6 , (11

which describes the TF displacement effects caused by the
operator (or LTV system) H [10].

If H = R, is the autocorrelation operator of a nonsta-
tionary random process z(t), then the WS becomes the

Wigner-Ville spectrum (WVS) of z(t),

Wt f) = Lau(05) = [ re(t+F.0=F) e/ ar

The WYVS describes the average TF energy distribution of
z(t) [4, 5]. Furthermore, the spreading function of R, is
the expected ambiguity function (EAF) of z(t),

A(r,v) = Sr.(T,v) = Femn FroWa(t, )} (12)
T T —§27y
- [r,(t+§,t—§)e j2mvt gy 13)

which can be interpreted as a TF correlation function [3].

Underspread processes. A nonstationary process z(t)
is called underspread if its EAF A,(r,v) is effectively re-
stricted to a small rectangular region A, about the origin
of the (r,v)-plane [3], ie., Az(7,v) = 0 for (1,v) € A.. In
the case of an underspread process, process components far
apart in the TF plane are (nea.rlys uncorrelated [3]. With
(12), it is seen that the WVS of an underspread process is
a 2-D lowpass function, i.e., a smooth function.

Two processes are called jointly underspread if their EAF
supports are restricted to the same small region about the
origin of the (r,v)-plane. Note that two underspread pro-
cesses need not be jointly underspread.

TF formulation of the WF. Using (11) and (13), the
operator equation H R, = R, defining the WF can be
rewritten in terms of the operators’ spreading functions as

/ / Su,(r—%,v—0) A (7,0) ™" drdp = A, (7, v).

14
If s(t) and n(t) are jointly underspread with EAF supl()orz
region A = A, = An, then it follows with A-(,v) =
As(7,v) + A (1,v) that also r(t) is underspread with EAF
support .A. Let us assume that also the support of the
WF’s spreading function Su, (7, v) is restricted to A (such
a restriction seems indeed to be valid for jointly under-
spread s(t), n(t)). With these assumptions, both the in-
tegration variables 7,7 and the external variables 7,v in
(14) are restricted such that n(r¥ — »7) <« 1 and thus

exp {jm(79 — v7)} = 1. Hence, (14) can be approximately
replaced by the convolution

//SHO(T—*F,V—D)Z,('F,D)di—dﬁ = A, (r,v). (15)

Taking the Fourier transform of (15) yields

LHo(tvf) Wr(t7f) ~ W,(t,f), (16)
which is the TF formulation of the operator relation
H,R, = R,. This equation shows that the WS Ly, (¢, f) of
the WF is ambiguous for all TF points where W..(¢, f) = 0.
This is analogous to the ambiguity of H, on the comple-
mentary observation space S (cf. Section 2). Let R, de-
note the effective TF support of the observation r(t) (i.e.,
We(t, f) =~ 0 for (t,f) € R.). A “minimal” solution of
(16), corresponding to the minimal WF in (6), is obtained
by setting L, (¢, f) = 0 for (¢, f) € R, (i.e., in the TF
region where 7(t) does not have any energy). This yields

Wit f)
W +man BHER
0, t f) & Ro,

Lu,(t, f) = (17)
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where W, (t, f) = Ws(t, f) + Wal(t, f) has been used. A
similar derivation based on (2) shows that the WVS of the
signal estimate 5, (t) is approximately given by W;, (¢, f) =
Lu, (t, f) Ws(t, f) (cf. (7)) and further by

.. )’
er = , (&, f) €ER-
wen+waen 7

0, (¢ f) € Re.
Similarly, the WVS of the estimation error e,(t) is

Wi, (6 ) = (18)

We,(t, f) = Lu, (t, f) Wa(t, f) (cf. (8)) and further
W, (t, ) Wa(t, )
Wt )~ d Wit H+wat, ) PDER g
0, (t,F) & R

The WVS relations (18) and (19) (which hold for the gen-
eral WF) are the TF formulation of the operator relations
(7) and (8), respectively.

Interpretation. Egs. (17)-(19) are the desired extension
of the simple frequency-domain expressions (3)-(5), respec-
tlvely to nonstationary WFs. For stationary processes,
(17)-(19) duly reduce to (3)-(5). The TF formulation (17)-
(19) allows a simple and intuitively pleasing interpretation
of nonstationary WFs in the underspread case (see Fig. 1):

e In the “signal-only” TF region R,\ R, where W,(t, f)
# 0 and Wy (t, f) = 0, we have Ly, (¢, f) =~ 1, i.e., the
WTF passes the signal.

e In the “noise-only” TF region R \Rs where W, (2, f)
# 0 and W, (t, f) = 0, we have Ly, (¢, f) = 0, i.e., the
WF suppresses the noise.

e In the “signal+noise” TF region R, N Rn where

Wa(t, f) # 0 and Wa(t, f) # 0, Lu,(t, f) is approx-
imately between 0 and 1 dependmg on the relative
local strengths of 51gnal and noise. For example,

Lu, (¢, f) = 1/2 for (t, f) where W,(¢, f) = Walt, ).

e The TF support of the WVS of the signal estimate,
Wi, (¢, f), is restricted to the TF support R, of the
signal (where W,(t, f) # 0).

e The TF support of the WVS of the estimation error,
We,(t, f), is restricted to the “signal+noise region”
Rs N Ry (where W,(t, f) # 0 and WL(t, f) # 0).

Fig. 1. (a) Effective TF supports of signal, Rs, and noise,
Rn, (b) “signal-only” region R, \ Rn, “noise-only” region
Ra \ Rs, and “signal+noise” region Rs N Ry,
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We note that the last two results are analogous to the re-
lations (9).

Simulation results. The above TF formulation is veri-
fied experimentally in Fig. 2. The WVS of the signal and
noise processes (generated by the TF synthesis method de-
scribed in [11]) are shown in Figs. 2(a),(b). The WS of the
WF (shown in Fig. 2(c)) and its approximation (17) (shown
in Fig. 2(d)) are seen to be very similar. Furthermore, the
WS of the WF is = 1 in the signal-only region, = 0 in the
noise-only region, and ~ 1/2 where W;(t, f) = Wa(t, f)
(cf. Fig. 1(b)). The WVS of the estimation error (shown in
Fig. 2(e)) is in fact restricted to the “signal+noise region.”
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Fig. 2. TF analysis and TF design of nonstationary WFs:
(q) WVS of signal s(t), (b) WVS of noise n(t), (c) WS
(slightly smoothed) of WF H,, (d) approzimation of WS

of WF according to (17), simultaneously WS of Weyl
filter Hy, (e) WVS of error eo(t) of WF, and
(f) WVS of error e1(t) of Weyl filter.

4 TIME-FREQUENCY DESIGN

The approximate expression (17) for the WS of the WF
suggests a TF design of nonstationary WFs. Let us define
the linear, time-varying filter H; whose WS is equal to the
right-hand side of (17),



A
Lt p) EATGEHIwan BDER g
0, ) & Ro.

We shall call H; a Weyl filter since it is defined in terms
of its WS [12}-{14]. The impulse response (kernel) h; (¢,t")
of the Weyl filter is easily obtained by inversion of (10),

t+t 2 (tmt!
mt) = [ (S50 g
f
and the signal estimate is finally calculated as

5() = Hir)(t) = / hi(t, t)r(t') dt'.
tl

For jointly underspread s(¢t) and n(t) where (17) holds, we

have Lu, (¢, f) = Lu,(t, f). It can furthermore be shown

that W51 (t, f) =~ Wia(tv f) and Wel (t1 f) = W, (t7 f)’

where el@l = g(t) — 31 (t) denotes the error signal obtained

with the Weyl filter. Hence, the Weyl filter H; will closely
approximate the WF H,. However, if s(t), n(t) are not
jointly underspread, (17) is not valid, the Weyl filter will
be widely different from the WF, and its performance will

not be satisfactory.

The Weyl filter has two advantages over the WF:

e The a priori information required for its design is
iven by the WVS of signal and noise, and is thus

?rmulated in the intuitively meaningful TF plane.

e The TF design of the Weyl filter is less expensive
than that of the WF since the inversion of an op-
erator (cf. (6)) is replaced by simple scalar inversions
(cf. (20)) followed by Fourier transforms (cf. (21)).

Simulation results. Fig. 2(d) shows the WS of the Weyl
filter for the signal and noise processes whose WVS are
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Fig. 3. Realizations of signal, observation, signal
estimates, and error processes (resl parts shown):
(a) signal s(t), (b) observation r(t), (c) signal estimate
30(t) of WF, (d) signal estimate 3:1(t) of Weyl filter,
(e) error eo(t) of WF, and (f) error e1(t) of Weyl filter.

depicted in Figs. 2(a),(b). Note the close similarity to the
WS of the WF in Fig. 2(c). The WVS of the error signal
obtained with the Weyl filter, shown in Fig. 2(f), is nearly
identical to that obtained with the WF (see Fig. 2(e)).

The average SNR improvement® achieved by the WF is
5.08 dB, while that of the Weyl filter is 4.99 dB. Hence,
the WF performs only slightly better than the Weyl filter.
Realizations of the signal s(t), noisy signal (observation)
r(t), signal estimates 3,(¢) and §;(t), and estimation error
signals e,(t) and e;(t) are depicted in Fig. 3.

5 CONCLUSIONS

We have extended the frequency-domain formulation, in-
terpretation, and design of stationary WFs to a TF formu-
lation, interpretation, and design of nonstationary WFs.
This extension is based on the Weyl symbol and the
Wigner-Ville spectrum, and is valid for nonstationary sig-
nal and noise processes that are jointly underspread. The
performance of the approximate WF obtained by the pro-
posed TF design is nearly as good as that of the exact WF.
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