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ABSTRACT

In this paper we investigate a M-band wavelet decom-
position of second order random processes. In par-
ticular, we propose an extension of results which are
known for the dyadic wavelet transform. The statis-
tical properties of the M-band wavelet coefficients are
listed and recursive relations are derived and used to
compute their multiscale characteristics. Special at-
tention is also paid to the multiscale analysis of linear
parametric models.

1. Introduction

There has recently been a growing interest in the multi-
scale characterization of random processes [1, 2, 3, 4, 3,
6]. The objective of most of these works was to develop
a new estimation/decision framework which would al-
low to integrate multiscale informations and reduce the
computational complexity of conventional algorithms.
A problem which is frequently encountered in this con-
text is the ability to relate the statistical properties of
a process often available at the highest resolution to
those at low resolutions.

In this paper, we investigate the second order statis-
tical properties of the M-band wavelet coefficients of a
random process. In Section 2, the principles of the M-
band wavelet decomposition are quickly reviewed and
our notations are introduced. Section 3 gives the basic
expressions of the correlations of a process in the time-
scale domain. The exponential decay properties of the
correlation sequences are outlined in Section 4. Section
5 provides scale recursive formula to compute the sec-
ond order moments. Finally, we focus on the multiscale
characterization of Auto-Regressive Integrated Moving
Average (ARIMA) models, in Section 6.

1 The author would like to thank H. Krim for his help and

many fruitful discussions.
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2. Notations

The M-band wavelet decomposition [7] (M € N\ {0})
generalizes the 2-band wavelet decomposition [8] which
has gained much popularity in the recent years. Its
definition involves a scaling function #o(t) and M — 1
analyzing wavelets (¥,(¢))pez in L%(R). The M-band
analysis of a second order complex process x(t) allows
one to extract its features at scale M7, j € Z, by cal-
culating its wavelet (resp. approximation) coefficients,
forpe {l,...,M — 1} (resp. p=0),

30 & [ x) (3

The above integral exists in the mean square sense if

—k)ydt, keZ. (1)
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To construct orthonormal wavelet bases, 1t i1s conve-
nient to define multiresolution analyses of L(R). This
requires equations relating the basis functions lying at
two successive scales, t.e.

SblG) = D hel(—k) ¥olt = k),

k=-00

0<p< M,

(3)
where (hy(k))kez is a sequence in ¢%(Z). This relation
also leads to an efficient computation of the wavelet
coefficients by cascading M-channel Quadrature Mir-
ror Filter (QMF) banks, whose impulse responses are
the sequences (hp(k))rez. When this filter bank is pa-
raunitary, the frequency responses H,(w) of the filters
are such that

M-1
w+2tm w+2mrm,,

m=0

which entails the orthonormality of the corresponding
wavelet basis (1\/[_]/2 '(/)p(t/j\/f] —_ k))(k,j)612,1§p<M of
L%(R). Another desirable property of the wavelets is
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their orthogonality to polynomials up to some order
r €N,

/ t*p,()dt =0, 1<p<M,1<k<r, (5)

in order to ensure some “regularity” of these functions.
This r-vanishing property is satisfied iff
Hyw) = (1= €“y Hy(w), 1<p<M, (6)

where f],,(w) is locally bounded around 0.

We denote the cross-correlation of two (second order)
complex random processes x(¢t) and y(t) by

£ B{x(t)y(u)"} (M)

and their cross-spectrum density is defined as
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Sw,v) & / / ey (1) e~ @) gt 4y (8)
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~ A
(resp. ¥{w,v) =

In the
stationary case, xy(¢,t — 7) 2 Ryy(7), whose Fourier

transform is ﬁxy(w). When y(t) = x(t), the above
second order moments reduce to the autocorrelation
¥x(t,u) (or Ry(7)) and the power spectrum density

Ye(w,v) (or Ry(w)).
3. Second Order Statistics

The expressions concerning the second order statistics
of the 2-band wavelet coefficients of a second order pro-
cess [1] x(t) may be readily extended to the M-band
case.

for continuous (resp. discrete) time signals.

Property 1 The cross-correlations Yered, (k 0, (p,9)

€ {0, .. - 1}%, (4,s) € 22, are obtamed from the
autocorrelatzon 1x(t, u) as foIIows

7c;c§+’(ka I) =
pivels [ [ i k), Mt 1)
B (1)" g (u) dit du. (9)
We have equivalently in the frequency domain:

?c?c;_'_l (w’ V) =

M

1 2 w=2rk v—2xl
Mi+s/2 2 2 Wl )

k=-o0l=—00

bp(w — 2Tk)* (v — 2al) . (10)

The above results can be further simplified in the sta-
tionary case.

Corollary 1 When x(t) is a stationary process for all
5>0and me{0,...,M° 1}, (& (lc) F(Mk+
m))kez and (¢ ]+5(k'))kel are cross- statzonary sequences
such that

Reps oo (k) =

€ mCits
M,/ Re(MP(r +m+ M*E))
Aypyy(s, T)" dr, (11)

where Ay,y, (s, T) is the wide band cross-ambiguity func-
tion defined by

1 0 t—
Au(s.7) 2 77z [ 0wy a ()

The cross-spectrum density of the two processes is then
given by

A 27rk
Rep.s o (w) M,/z Z R( )

Jom its
k=~o00

eim —T‘”;q“k 12;\}) ( —M27rk

It must be pointed out that the cross-stationarity of
the sequences (cf(k))rez and (c},,(k))rez, resulting
from the decomposition of a stationary random pro-
cess, is only guaranteed if s = 0. Note also that the
cross—statlonanty of all the sequences (¢, (k))cez and
(c +,(k))kel, s>0,p>0 ¢ >0 lS "not generally
a sufﬁc1ent condition for the stationarity of the ana-
lyzed process. In particular, the correlated noise which
is synthesized by setting 7C;c-]l_+l(k,l) = a},p é(p — q)
6(k—1)6(s), p >0, ¢ > 0, is not necessarily stationary.

) glw — 27k).  (13)

4. Some Asymptotic Results

We now derive upper bounds on the correlations of M-
band wavelet coefficients, which are useful to highlight
their asymptotic behaviors. We will first state the re-
sults concerning intrascale correlations.

Property 2 Let x(t) be a stationary process whose au-
tocorrelation is exponentially decaying,

| Re(7) 1< Re(0) eV, >0, (14)

I[I Ay, (0,7) |< Awpd,q(-r), for all T € R where
Ay,u,(T) is a real Lipschitz function such that, for all
(11, 7m2) € R?,

Kpy >0,

(15)

| A‘l‘p'pq(Tl)_/id’p’/"q(Tz) |§ A’pq | T — T2 l,
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then

2 - K
?,q < —R, - —Piy,
| Repes8) 1< 2 B0y () + 228). (16)

Proof : According to Eqs. (11) and (14), we have

| Rc;?cj-'(k) < M RX(O)/ e‘anlr-HcI /11/;»%(7') dr.

(17
Furthermore, by using (15), we find that

e Ay (0) = Ay, (B | dr

- g —"‘Mj|7'| _ 2qu
S RI"I € I T I dr = azsz (18)

|
This result means that the intrascale correlations of the
wavelet coefficients exponentially decay w.r.t. j. It is
important to note that Assumption (15) is fulfilled for
two interesting kinds of wavelets:
e compactly supported wavelets, i.e.

| 9p(t) | < [¥plleorectz(t), T >0, (19)
Apwo(T) = Kpg(T— |7 [Jrectar(t),  (20)
Kpg = |Wplloo l|¥glleo 5 (21)
e exponentially decaying wavelets, i.e.

[¥p(t) | < ||¢p||ooe—ﬂm >0, (22)

A 1 -8|r ¢
Ay (1) = erq(E“‘ |reflt, (23)
Kpg = [l¥plleo llglloo /e (24)

Some more accurate bounds may be found in these two
cases by using the specific form of Ay . (7).

We now turn our attention to interscale bounds.

Property 3 Let x(t) be a stationary process salisfying
Eq. (14). If there ezists ay,y, > 0 such that, for all
TER and s >0,

a‘b ¢q 0
| Ay, 1< So2be, (25)
then 2
Qyoipq
| Rezr ez, (k) |< —275 Rx(0). (26)

This means that the interscale correlations exponen-
tially decay w.r.t. s. As previously, compactly sup-
ported (resp. exponentially decaying) wavelets appear
as special cases of wavelets satisfying Condition (25),
with ay,y, = T|¥plleo 1gllec (resp. ay,y, = 2/8
1%p1loo {1#qllco)-

5. Scale Recursive Formulations

In practical situations, it is often convenient to deter-
mine the second order statistics of the M-band wavelet
coeflicients by making use of Eq. (3). Scale recursive
relations are thus obtained to compute the intrascale
correlations:

Property 4 The cross-correlations Ter, el (k, 1),
(p,q) € {0,...,M — 1}2, are obtained from the auto-
correlation .0 (k, 1) by the 2D filter bank shown in Fig.
1. If the am;lyzed signal is stationary, this structure
reduces to a 1D filter bank, as shown in Fig. 2.

The interscale correlations 7cfc;+‘(k’ {} or Rc;’,:ch’(k),
s > 0, may be derived in a similar way. Furthermore,
when an orthonormal wavelet basis is used, conserva-
tion laws of the autocorrelation sequences are deduced
from the above property:

* Corollary 2 The orthonormal wavelet decomposition
of a stationary process is such that

M-1
MR.o(Mk)= ) R (k) (27)
p=0
M ch * ch(Mk)
-1
= R

S
%

Bt * Rerep (B), (28)

3
1
)

-~
Il
=)
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wher destgnates the convolution of two sequences.

Proof : As a consequence of Eq. (4), we have

M-1 N M-1 .
> Roi@ =3 R (@), (29
m=0 ” p=0
M-1M-1 N
Z Z I Rc? '1"'(:0’1 ,(w) |2—
m=0m'=0 »m
—1IM-1 N
. Lo I Rc§+1c}+l (w) |2 ) (30)
p=U ¢=

which lead to the desired relations.

6. Decomposition of Linear
Parametric Models

It is often useful to model the approximation coeffi-
cients at the highest resolution M =70 of a multiscale
analysis by a discrete time ARMA process. This as-
sumption is relatively weak as it is particularly valid if
the redundant approximation coefficients

a [® 1 60—t .
Cfu(t)—_-/_m x(0) 37072 Vol 55 )" 49 (31)
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can be modeled by a continuous time ARMA process.
The following property can then be established:

Property 5 When (c} (k))rez is an ARMA process
and FIR multiresolution filters are used, the sequences
(Cg(k))kez, J > jo, are also ARMA processes. The AR
part A%, (w) is equal to Hﬁsl AY(2E259) gnd the MA
part B]+l( w) is a polynomial in " which is obtained by
a spectral factorzzatzon of M~1 Zq_o | H (%) 12

| BY (#552) |* Tlmcomseg | AP(S5E2) |2,

m_O ,m#q

Proof: The expressions of | A}, (w) |* and | BY (W) |2
are straightforwardly obtalned from the decimation ru-
lgs. These functions are (non causal) polynomials in
e™, since | A§+1(Mw) |2 and | BY | (Mw) |2 are poly-
nomials which are invariant through any shift of w by
2em/M,me{l,...,. M —1}. |
These results can be extended to ARIMA nonstation-
ary processes and, as in the 2-band case [6]:

Corollary 3 Let an r-vanishing M-band wavelet de-
composition be tmplemented by a QMF filter bank with
FIR analysis filters of length P + 1. If for any jo € Z,
(¢}, (E)kez is an ARIMA(K,D,LY)), D €N, then, for
J > Jjo, the approzimation sequence (c(k))rez is an
ARIMA(K, D, L;’), with

P
Y1 = MIo=3) 4 [0 pMie=i

(32)
If r < D~ 1, the wavelet sequences (c}(k))rez are
ARIMA(K, D — r, L?) with

M-1

L; < ij -T, (33)

and, if r > D, they reduce to ARMA(K, L;-’) processes,
with _
E<L-D. (34)

It is worth noting that the (intrascale) stationarity of
the wavelet coefficients holds when the vanishing or-
der of the analyzing wavelets is sufficiently high. We
also deduce from the above statement that the order
of the AR part of an ARIMA process is preserved in
the decomposition, whereas the order of the MA part
is dependent on j.
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Figure 1: Recursive computation of intrascale correlations,
in the nonstationary case.
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Figure 2: Recursive computation of intrascale correlations,
in the stationary case.



