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ABSTRACT

In this paper, we present a connection between the dis-
crete Gabor expansion and the evolutionary spectral the-
ory. Including a scale parameter in the Gabor expansion,
we obtain a new representation for deterministic signals
that is analogous to the Wold-Cramer decomposition for
non-stationary processes. The energy distribution result-
ing from the expansion is easily calculated from the Gabor
coefficients. By choosing gaussian windows and appropri-
ate scales, the expansion can represent narrow-band and
wide-band signals, as well as their combination. As an ap-
plication, we consider the masking of signals in the time-
frequency space and provide an approximate implementa-
tion using the new Gabor expansion. Examples illustrating
the time-frequency analysis and the masking are given.

1. INTRODUCTION

The time-frequency analysis of deterministic signals, and
the estimation of time-varying spectra of non-stationary
processes are topics of theoretical and practical interest
in the processing of speech, seismic and biological signals.
The Gabor expansion has been widely used in these ar-
eas 1, 2, 3], and it can be viewed as an extention of the
short-time Fourier transform. Recently, a discrete repre-
sentation was developed and used in the filtering of signals
[4, 5]. On the other hand, the evolutionary spectral theory
[6] deals with the spectral representation of non-stationary
processes and the estimation of their time-varying spectra.
The Wold-Cramer decomposition [7] is the spectral repre-
sentation of a non-stationary process z(n),

z(n) = / A(n,w)e™“"dZ(w) (1)
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Using this decomposition, the evolutionary spectrum is de-
fined as Swc(n,w) = |A(n,w)f*.

Our aim in this paper is to show that an analogous rep-
resentation is possible for deterministic signals. We develop
a new version of the Gabor expansion, including scaled non-
orthogonal windows, to obtain such a representation. The
resulting time-frequency energy distribution is shown to be
related to the Gabor coefficients. Whenever the windows
are gaussian and the scales are chosen appropriately, the
generalized Gabor expansion is able to represent narrow-
band and wide-band signals, and their combination. To
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illustrate the application of the proposed Gabor expansion,
we consider the time-frequency masking of signals and pro-
pose an efficient implementation of it. Examples of the
time-frequency analysis, and the masking are given.

2. GENERALIZED DISCRETE GABOR
EXPANSION

2.1. Discrete Gabor Expansion

Given a finite—support or periodic signal z(n), its discrete
Gabor expansion is [4]

S
L
=
L

amkhm k(n) 0<n<N-1 (2)

(4]

z(n) =
0

3
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where the synthesis window function is defined as
B (n) = h(n — mL)e?**"”

and wx = 27k/K. To evaluate the expansion coefficients
{amx}, a set of functions {v(.)} orthogonal to {k(.)} are
needed. To find them the frequency step, 2x/K, and the
time step, L = N/M, must be such that 2xL/K < 2x, or
equivalently L < K. In the critically sampled case, L = K,
a unique set of functions {7(.)} can be obtained, whereas
in the oversampled case, L < K, the set of functions is not
unique but can still be obtained.

The biorthonormality between A(.) and the analysis win-
dows

Jwin

Ymx(n) = v(n —~mL)e

is given by

N-1

Z bk (n)ys,e(n) = 8s—mbe—x 3)

n=0

for0 <m,s < M ~1and 0 €kt < K —1. The Gabor
coefficients are then evaluated according to

b = 3 (8) 7k (1) @
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2.2. Evolutionary Energy Distribution

The Gabor coefficients {am,x} have no significance in the
time—frequency space. One can, however, use them to cal-
culate an evolutionary energy distribution. Consider the
following representation, analogous to the Wold-Cramer de-
composition, for a deterministic signal z(n)

K-1

z(n) = Z A(n, wr)el“ ™

k=0

0<n<N-1 (5

Comparing the above with the Gabor expansion in (2}, we
obtain

M-~1

Aln,wi) = Z amx h(n—mlL)
= Y a(l) v°(1- mL)h(n — mL)e™ ¥
m,l

after the {am,k} in (4) are replaced.
If we reorder the above equation we get

Aln,wg) = Z h(n —mlL) z ()y* (I — mL)e™?*!

which is similar to the evolutionary periodogram (EP) in
[8], except we have now non-orthogonal window functions,
whereas in the EP we used orthogonal polynomials.

Let us then show that |A(n, wk)|? is an energy distribu-
tion. Since the Gabor expansion of z(n) can be done with
either k{.) or v(.), we thus have that for a fixed k,

M-1
A(n,wk) = Z Am,k h(n - mL)
m=0
M-1
= bix v(n—1L)

=0

If we use the above expressions to calculate | A(n, wx)|? and
then use the biorthonormality we get

Z [A(n,we)? = Zam,k bk Z B,k (n)70x ()

m,l

-
E am,k bm,k

m

Now, since the total energy of the signal is

YlE@F = D0 amk bl D hmi(n)1ie(n)

m,k s,t n

*
= § Am,k bm,k

m,k

we then have that
D ls@IP =) 1A, w)l (6)
n n k

indicating that |A(n,wi)|? is the energy distribution of z(n)
in the time—frequency space.

2.3. Generalized Gabor Expansion

The time and frequency resolution of JA(n,ws)|* depends
on the width of the analysis window used. To improve the
resolution one could average the energy distributions ob-
tained using different scaled windows. For each of P scales
we obtain a Gabor representation of z(n), and thus

1
z(n) — F a{,m,khi,m,k(n)
i=0 m=0 k=0
. P-1K~1 _
= P Ai(n,wi)e’*" (7)
1=0 k=0
where
M= 1 L
n-—m
JYRPRT S PRV EL TR
m=0 Vi .

and the synthesis window, for a scale 3;, is given by
1

—=h

yol

and similarly for the analysis windows {vi,m,x(.)}.

Once the A;(n,wk) are available, there are many aver-
aging procedures [9] to improve the resolution of the evolu-
tionary distribution. In the examples, we will illustrate the
arithmetic and geometric average-based calculations.

Bimk(n) = 'i+mL)ejwkn (9)

3. TIME-FREQUENCY MASKING

Masking in the time—frequency space consists in changing
the energy distribution of a given signal in the way specified
by a masking function |H (n,wx)|?. In the evolutionary case,
the energy distribution |A(n,w)|? is simply multiplied by
the given masking function |H(n,ws)|* to obtain the energy
distribution of the masked signal.

In the following, we propose an approximate implemen-
tation that breaks up the input signal into non-overlapping
frames where the filtering is done by linear time-invariant
(LTT) filters. This method is computationally more efficient
than the one proposed in [10], where the processing is done
line by line. It should be mentioned that equivalent linear
time—varying filters can be obtained for the above proce-
dures. The advantage of our procedure is that we obtain
the masked signal without implementing LTI filters.

The input signal is broken into J non-overlapping frames,
that is

J-1 J-1
z(n) = }: z(n)w;(n) = Zyj(n) (10)

where

w;(n) = { 1 Nj/J<n<N(G+1)/7

0 otherwise

fory=0,---,J - 1.
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Using the Gabor representation of (n) in (7), then each
yj(n) has a non-orthogonal expansion

P-1M-1K-1

u(m) =5 Sk () (1)

based on the window functions
fl k(1) = Bim,k(n)w;(n)

which are by construction zero outside the analysis frame.
We then filter the signal y;(n) to eliminate frequency com-
ponents outside the average band [wj1,wj2]:

zj(n) = Zw(‘)yj(n—l)

-1 M-1K-1 )
@i,m k[ f] m x (7) * g5(n)]

m=0 k=0

‘U

1
P

]
o

where g;(n) is the impulse response of the LTI filter in the
jth frame. Taking the Fourier transform of the above equa-
tion we get

N

1 P—1M-1
Zj(w) = Gi(w)

a.,,.kF k@)
1]

x
0

=0 m=0

where Gj(w) is the frequency response of an ideal bandpass
filter of unity magnitude in the band [wj1,wj2] or equiva-
lently for k in [kj1, kj2). We then find that

Z a"m”‘fiJ;m.k (n) (12)

i=0 m=0 ke€lkji,kjz]

Hence, the combination of all windowed z;(n) will result in
the masked signal

J=1

z(n) = z(n)wj(n) (13)

=0

The above procedure basically considers the input signal
stationary inside the analysis frame. The mask is thus ap-
proximated by a concatenation in time of LTI filters oper-
ating on the analysis frames. Overlapping the windows, one
can improve the results but at a higher computational cost.

4. EXPERIMENTAL RESULTS

Example 1. The signal in this example is a combination
of a sinusoid, a delta function and two chirps with time-
varying amplitudes. Using gaussian windows with 9 differ-
ent scales, the arithmetic average of the obtained energy
distributions is displayed in Fig. 1. Notice that the scales
permit good representation of narrow-band and wide-band
signals.

Example 2. In this example, we illustrate the geometric
average of the energy distributions of a signal which is a pe-
riodic sequence of delta functions with time-varying period.

Figure 2 shows the distribution obtained using a narrow
gaussian window, and Fig. 3 shows the distribution when
a wide window is used. The geometric average is shown in
Fig. 4. Notice that this figure clearly indicates the change
in periodicity and the energy concentration of the signal.

Example 3. The signal in this case consists of sinusoids,
occurring intermittently in time, and a chirp that connects
two of them as shown in Fig. 5. We wish to mask the chirp,
and so an appropriate definition of the mask is used and the
energy distribution of the masked signal is shown in Fig. 6.

5. CONCLUSIONS

In this paper, we have obtained the connection between the
discrete Gabor representation and the evolutionary spec-
tral theory. A generalized Gabor expansion including scale
parameters was developed. Averaging the energy distribu-
tions, obtained for different scales, permits us to improve
the time-frequency resolution. Finally, we proposed a prac-
tical implementation of masking in the time-frequency space
using the new Gabor representation.
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Figure 1: Arithmetic average energy distribution
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Figure 2: Narrow-window energy distribution
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Figure 3: Wide-window energy distribution
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Figure 4: Geometric average energy distribution
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Figure 5: Energy distribution of the given signal
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Figure 6: Energy distribution of the masked signal




