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ABSTRACT

Joint time-frequency representations have proven very use-
ful for analyzing signals in terms of time-frequency content.
Recently, in an attempt to tailor joint representations to a
richer class of signals, two approaches (Cohen’s and Bara-
niuk’s) to obtaining joint representations of arbitrary vari-
ables have been proposed. Baraniuk’s generalization appears
broader than Cohen’s, since the latter can be recovered from
the former as a special case. One of the main results of
this paper is that, despite being apparently quite different,
the two approaches to generalized joint representations are
ezactly equivalent. We explicitly characterize the mapping
which relates the representations of the two methods, and
also determine the corresponding relationship between the
operators of the two methods. A practical implication of
the results is that one can avoid the group transforms in
Baraniuk’s approach, which may not be computationally ef-
ficient, by replacing them with Fourier transforms in Cohen’s
method.

1. INTRODUCTION

Joint time-frequency representations (TFRs) are used for an-
alyzing signals in terms of time and frequency content, or
signals with unknown time or frequency shifts. They have
proven very useful for many types of signals; radar, speech
and transients are some examples. Recently, however, joint
representations in terms of other variables have been exten-
sively studied in an attempt to tailor the representations to
a richer class of signals [1, 2, 3, 4, 5, 6]. The wavelet trans-
form and generalizations are the best known, which analyze
signals in terms of time and scale content. -

Recently, Cohen and Baraniuk proposed methods for ob-
taining joint representations of arbitrary variables (signal
parameters) [2, 3, 5]. The ability to tailor new represen-
tations to any “natural” signal parameters or characteristics
of interest is potentially of great value in many applications.
The fundamental idea behind both approaches is associat-
ing variables of interest with appropriate operators. Cohen’s
method is based on Hermitian operator correspondence, that
is, associating variables with Hermitian (self-adjoint) opera-
tors, while Baraniuk’s method is based on associating vari-
ables with parameterized unitary operators which are uni-
tary representations of certain 1d groups [5]. On the surface,
Baraniuk’s method appears to be more general than Cohen’s
approach, since Cohen’s method can be recovered from it
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by basing the construction on the translational group of re-
als. Cohen’s approach, on the other hand, generally appears
more attractive computationally by virtue of being based on
Fourier transforms as opposed to arbitrary group transforms
as in Baraniuk’s approach. Clarification of the relationship
between these two methods is essential for a better under-
standing of generalized joint signal representations.

We show in this paper that, despite the apparent dif-
ferences between Cohen’s and Baraniuk’s approaches, the
two methods are ezactly equivalent. We prove that there
is a one-to-one and onto mapping which relates the joint
representations constructed by the two methods. In addi-
tion to explicitly characterizing this mapping, we also derive
equations which explicitly state the relationship between the
unitary operators of Baraniuk’s method and the Hermitian
operators of Cohen’s approach.

In addition to their theoretical significance, the results
have important practical implications as well. One particular
implication is that we can do away with the group transforms
in Baraniuk’s approach, which may not be computationally
efficient, by replacing them with Fourier transforms in Co-
hen’s method. However, Baraniuk’s method often offers a
more obvious means of deriving generalized signal represen-
tations based on desired signal parameters. Unification of
these concepts should enhance both conceptual understand-
ing and practical application of these methods.

After briefly describing the two methods for generating
joint distributions of arbitrary variables in the next section,
we present the main results in section 3. We summarize the
results and comment on their implications in section 4.

2. PRELIMINARIES

To be able to present the results of the paper, we need a
description for the two methods for generalized joint signal
representations. For simplicity, we will consider joint distri-
butions of two variables only; extension to multiple variables
is straightforward. In the following we use the subscript “H”
for Hermitian operators, operators corresponding to Bara-
niuk’s approach wear a hat “A”, and the dual operator of an
operator is distinguished by the superscript “¢.”

2.1. Cohen’s approach: Hermitian operator corre-
spondence

Let a and b be two variables of interest; they could be time
and scale, for example. In Cohen’s approach, the variables, a
and b, are associated with appropriate Hermitian operators,
A,, and B,,, respectively. The eigenfunctions of A, and
B,, define unitary signal representations S4 and Sp which
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yield the a- and b-representation of the signal. The joint
distribution /representation, (Ps)(a,b), should satisfy the a
and b marginals; that is,

/ (Ps)(a,b)db

[(Sas) (@), (1)

/ (Ps)(abyda = |(Sss)(b)? @)

The idea behind generating such distributions is that they
can be recovered from the characteristic function Ms:

/ / (Ms)(8, T)e 72" ~2" "  dgdr, (3)
/ / (Ps)(a,b)e’®™**e* ™ dadb . (4)

Note that Ps and M s are related through a 2d Fourier trans-
form. The key observation is that the characteristic func-
tion, being an average of e/27%%e72™™® | can be directly com-
puted from the signal using a cha.ractenstlc function opera-
tor, Mg, ), an example of which is Mg,y = e’>"“ne J2m7By
[7, 2] (there are infinitely many characteristic function oper-
ators, in general.). Specifically, M's can be computed as

(Mg,r)s,3) = /(M(g,,)a)(t)s'(t)dt(S)

¢(01 T)(ejZRB.AHe]Qﬂ‘TBHS, 3) , (6)

where ¢ is some 2d kernel, and then, P(¢)s can be recovered
via (3).

(Ps)(a,b) =

(Ms)(8,1)

(Ms)(8,7) =

2.2. Baraniuk’s approach: unitary operator corre-
spondence

Baraniuk’s approach is based on associating variables with
parameterized operators which are unitary representations of
some 1d locally compact abelian (LCA) group. Specifically,
let G be a 1d LCA group with group operation o.! We
will use the symbols a,b for elements of G. A complex-
valued function « on G is called a character of G if |a(a)| =
1Va € G, and if it satisfies the functional equation a(aeb) =
a(a)a(b) Va,b € G [8]. The set of all continuous characters
of G itself forms a 1d LCA group I', the dualgroup of G, with
the group operation o defined by (a0 8)(a) = a(a)B(a), a €
G, a,B8 € T'. Because of this duality, it is convenient to
use the following notation for characters: a(a) = (a,a) =
(a,0)g-

The natural signal space associated with the group G
is #H1 = L*(G, dug) where u, is the Haar measure associ-
ated with G, and the natural analogue of the Fourier trans-
form is the unitary group Fourier transform, IFg : H1 —

L*(T',dpg) = Ha, based on the characters and defined as
(Fos)a) = /G (@)@ a)duga),  (7)
(Fs~'h)(a) = / he)aa)dus(@) . (8)
r

! An abelian group is a set G in which a binary operation e is
defined, with the following properties: 1) zey = y oz, Vz,y € G,
2)ze(yez) = (zoy) ez Vz,y,z €G, 3) there exists an identity
element 0 € G such that z¢0 = z Vz € G, and 42 for eachz € G
there exists an inverse z~! € G such that zez~! =0 [8].

A parameterized unitary operator Aa, a €. G, ls a unitary
representation of G on H; if it satisfies Ao Ay = Ay, With
each such .;l\a we can associate two unitary signal represen-
tations. The first one, S I Hi — H2, based on the eigen-
function of A, is A-invariant [5, 6]; that is, ](S;ﬁas)(aﬂ =
|(S28)(a)l. The other one, S, : Hy — Hi, based on the
eigenfunctions of the dual operator of A, (defined in section
3.1) [6],1s A-covariant; that is, (S;o./’l\as)(b) : (S2.9)(bea).
|(S;‘~s)(a)|2 and |(Sz\os)(b)|2 are referred to as “mva.nant en-
ergy density (IED)” and “covariant energy density (CED)”,
respectively, in [5].

Now suppose we are interested in the joint d)stnbutlons
of variables associated with two unitary operators .A and Bb
(the nature of this correspondence with variables is not clear
in [5]; using the concepts of “duality” and “shift operators”,
we make this correspondence precise in [9].}. Baraniuk’s ap-
proach allows us to recover either the IED or CED marginal
corresponding to an operator; that is, a joint distribution Bs
satisfies

/ (Po)(uv)dug(v) = S, ©)

/ Ba)woydugw) = Bef,  (10)

where the measures are either pg or p;, and §A is either

S» (IED) or S {CED) (SAIS defined similarly) [5] In this
approach too, a. mod.lﬁcat'.xon of the characteristic function
method is used. If the A IED marginal is desired, define the
unitary operator .Aa = A,, and if the CED marginal is de-
sired define Ay = A3 = S' 1A° S~ , the dual operator of A,

A0
where (Ag, )(a) = (a,a)" ( ). Similarly define B, and Bjg.
Since there are four different combinations, corresponding to
different marginals, we illustrate with a spec1ﬁc case pa.ral—
lel to [5]. Suppose we are interested in A-CED and B-IED
marginals. Then, the characteristic function is computed as
(11)

(Ms)(a,b) = ¢(c,b)(AaBss, s)

and the distribution can be recovered (using Fg) as

(P(3)s)(a.B) = /G /F (), b) (@, ) (b, B)" e ()i (3)

(12)
which yields the .A-CED and B-IED marginals {5].

3. MAIN RESULTS

In the last section we described Cohen’s and Baraniuk’s ap-
proaches to generalized joint signal representations. Bara-
niuk’s generalization, based on unitary representations of
arbitrary 1d LCA groups, is apparently broader than Co-
hen’s. In this section we present the main results of the
paper which show that, despite the apparent differences be-
tween them, the two approaches are exactly equivalent. The
exact relationship between the operators of the two methods
is also characterized. But we first we need to define the no-
tion of dual operators which is done next. Throughout this
section, the basic setup is the same as in section 2.2.
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3.1. Dual operators

Given the Hilbert space Hi, we can naturally define two
types of parameterized unitary operators: the representa-
tions of G on M1, and the representations of the dual group,
T, on H;. In Baraniuk’s method, the latter type of opera-
tors are used for computing the characteristic function if a

CED marginal is desired. Let Aq, a € G, and B3, 8 € T,
be umtary representatlons of G and T, respectlvely, on 7{1,

that is, .Aa.Aa: = .Aa.a: and BﬁBﬁ, = B9 Bo! - A, and B°
admit the following formal spectral representations (10, 9]
A, = S"IA S+ and Bﬁ = SAlAﬁSA where S2: Hy = Ha
and S
tions of A, and Bﬁ, and (Aas)(v) = (a,7)s(7), s € Ha,
and (Kgs)(b) = (b,8)*s(b), s € Hi1. Also, by Stone’s the-
orem [10], there exist unique Hermitian operators, A  and
Em defined on i, such that formally A, = (a,.ZH) and
gg = (g;;,ﬁ)". Dual operators are a special pair of such
operators.

Defintion: Dual operators. The operators A, (XH) and
gﬁ (E") are dual if Sp = FgSg,.
denote Bﬂ by .A° (B° byA )

:Hy ——) H, are 1sometr1es based on the eigenfunc-

In such a case, we

3.2. Equivalence results

As we mentioned in the introduction, Baraniuk’s approach
is implicitly based on a class of 1d LCA groups which are
isomorphic to the translation group of reals, IR, with the
group operation being addition (the dual group of (IR, +) is
(R,+)). Let G be the underlying group in Baraniuk’s con-

struction. Then, by assumption, there exists an isomorphism?

¥ : G — R (onto IR) such that ¢(a eb) = ¥(a) +(b) [8]. It
follows that the dual groups must also be isomorphic; that
is, there exists an isomorphism ¢ : I' = R (onto IR) such
that ¢(a o 8) = w(a) + ¢(B8). Although the dual isomor-
phism is not unique, after imposing certain normalizations
on the measures p; and pr., dug (¥~} (z)) = dz in particu-
lar, the following theorem is proved in [9] which characterizes
a particular one.

Theorem 1. For each a € T, define ¢(a) € IR as

e+izmbe(a) = (b, ¢(@)) g = (,/,*1(1,),01)6 , beR. (13)

Then, the functional equation (13) defines an isomorphism
¢ : ' — IR which is onto IR and satisfies

dp (07 (y)

Note that the functional equation (13) relates the characters
of (G, e) to those of (IR, +), the complex exponentials. The
isomorphisms, ¢ and ¢, are central to all the main results.

Now let .;1\ and gb be two unitary operators in Bara-
niuk’s approach corresponding to the vanables whose joint
representations are desired. Recall that Aa and Bb are uni-
tary representations of G on #;. Define the mapping Ty :
L*(R,dz) = L*(G,dug) as

(Ty3)(a) = s(¥f{a)) , (15)

2 An isomorphism is a one-to-one mapping between two sets.

=dy forallye R. (14)

a€G.

It is easy to verify that Ty, is an isometry from L?(IR, dz) onto
L*(G,dug) [9]; that is, |[Tys|ln, = |Is||z2. Similarly, define
the isometry T, : L*(IR,dz) — L*(T',dp.) as (Tys)(a) =
s{¢(a)). The mapping Ty allows us to map unitary repre-
sentations of G on H; to those of R on L?(IR,dz). Define
an operator on L*(IR,dz) as

Apay =T ATy (16)
which is a unitary representation of (IR, +) on L*(IR, dz) [9];

that is, A; Ay = Az4y, for all £,y € IR. Similarly, if we have
a unitary representation of I' on #i, A%, then the operator

Ay =T, A1) Ty (7

is also a representation of IR (the dual group!) on L*(RR, da:)
Given A; and Aj , by Stone’s theorem there exist unique
Hermitian operators A,; and .A?, defined on L*(IR,dz) such
that

Az = ep”IAH:(xv'AH)m (18)
A = e = (AL (19)

Now we are in a position to prove the main result of the
paper. Since there are four types of joint representations in
Baraniuk’s approach, corresponding to the choice of marginals,
we characterize the equivalence for representations with one
CED and one IED marginal; the equivalence for the remain-
ing types can be readily inferred from the stated result.
Theorem 2. Let (G, ) be afne-parameter LCA group iso-
morphic to (IR, +). For each P from Baraniuk’s class of joint
signal representations correiponding to operators Xa and B,
and yielding A-CED and B-IED marginals, there ezists a
P in a corresponding Cohen’s class (associated with a pair
of Hermitian operators) of joint signal representations (and
vice versa) such that

(P(#)s)(a, 8) (P(8)T, " 5)(¥(a), #(8)) where(20)
(Tys)(a) 3(¥(a)) (21)

is an isometry from L?(IR.dz) onto L?(G,du) and the ker-
nels are related as

#(a,b) = $(w(a), v(b)) - (22)
The equivalence (20) is unitary; that is,
(P(#)s)(a, 8) = (VaP(¢)Ugs)(a, B) (23)

where U = T'Zl and Vg is an isometry from L*(IR?, dz xdx)
onto L*(G x T, dpgs x dup): (VaP)(a, ﬂ) P(y(a), ¢(8)).

Proof: From (11) and (12) we see that P(¢) i3 given by

(P(8)s)(a, 8) = /G /P B, bY(ASBos, 5)

(a,@) (b, B) du (a)dug(b) , s € Lz(Gv dpg)

where we have substituted A, = ./TZ and By = Eb in (11),
since A-CED and B-IED marginals are desired. Using (16)
and (17) we get

(24)

(B(d)s)(a B) / / B, 8) (Ao By Ty 5, T3 )
GJI

(ava)(bvﬁ)‘d“r(a)dl‘c(b) (25)
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for some unitary operators, Ay and Bz, © € IR, which are
unitary representations of (IR, +) on L*(IR,dz). Making the
substitutions b = ¢! (y) and @ = ¢! (z) in (25) yields
(P@e)@8) = [3e™ @07 NABTS 5, T3 )
R
(@0~ (@) (¥ (¥), B) i (7 (2))dug (¥ ()
- / Bz, )T IR T Ty )
R2

H(@)(¥7 (), B) dedy

where in the last equality ¢ is defined as in (22), and we used

(18) and (19). Finally, using the functional equation (13) in
theorem 1, (26) becomes

(a, o~ (26)

P@e)as)= [ m/ 85, 4) (6= A IR T T )

612"¢(0)¢e—j2"!l¢(5)dzdy . (27)
Comparing (27) with (6) and (3) we get the relation (20).
The fact that Ty and Vg are isometries follows directly from
the definitions of the isomorphisms, ¢ and ¢, and the nor-
malizations imposed on them.

It is worth noting that the equivalence between the two
approaches is based on azis transformations of the signal and
the joint representation, and the axis transformations are
simply the group isomorphisms,  and ¢. Thus, we only need
to figure out the group isomorphisms to go from Baraniuk’s
approach to Cohen’s method and vice versa. Moreover, the
proof of theorem 2 also relates, albeit somewhat implicitly,
the operators of the two methods. The next theorem, proved

in [9], explicitly states this relationship.

Theorem 3. Let (G,e) be a one-parameter LCA group iso-
morphic to (R, +). Let A, and B, be the two unitary op-
erators in Baraniuk’s approach whose joint representations,
with A-CED and B-IED marginals, are desired. Let A, and
B,, be the corresponding Hermitian operators in the equiva-
lent Cohen’s class of joint signal representations. Then, A,
and .//1\,, are related by

Ay =57 ASa (28)

where A is defined on L*(IR,dz) by (As)(z) = = 73(z) and the
eigenfunctions of A, are related to those oan = SAJA SA

by

Sa=T;'$:Ty (29)

where S;o = FG_‘S:‘\ are the eigenfunctions of Ay = .Zl\g =

S}iKZS;o, the dual operator of.;l\a. Simzlarly, the operators
B, and Eb, corresponding to the other variable, are related
by

. =S5 'ASp , (30)

and the eigenfunctions of By are related to those of g{, =
SélAng by

Sp=T;'STy . (31)
L]

Example. Let (G,¢) = (R4, %), where x denotes multi-
plication. One characterization of the dual group is (IR, +)
with the characters given by (@, a) = e/ In(a) In this case,
it can be easily verified that t/;(a) In(a), ¢(a) = e, and the
joint representations are related as characterized in theorems
1 and 2.

4. CONCLUSIONS

From a theoretical viewpoint, the results presented in the
paper are significant in that they unify two apparently differ-
ent approaches to joint distributions of arbitrary variables by
demonstrating their equivalence and explicitly deriving the
relationship between them. The results imply that by sim-
ply axis warping a given joint representation we can obtain
a new representation with radically different properties.

The results are also important from a practical perspec-
tive because the equivalence shows that we can avoid com-
puting the group transforms in Baraniuk’s approach, which
may not be computationally efficient, by replacing them with
Fourier transforms in Cohen’s method. However, we empha-
size that the unitary operator method may conceptually be
the preferred one in many situations. Both approaches have
their merits, and by characterizing the exact relationship be-
tween them the results in this paper allow adoption of the
most convenient approach in any given situation.
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