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ABSTRACT

We describe extensions to the “best-basis” method which
select orthonormal bases suitable for signal classifica-
tion and regression problems from a large collection
of orthonormal bases. For classification problems, we
select the basis which maximizes relative entropy of
time-frequency energy distributions among classes. For
regression problems, we select the basis which tries to
minimize the regression error. Once these bases are se-
lected, a small number of most significant coordinates
are fed into a traditional classifier or regression method
such as Linear Discriminant Analysis (LDA) or Classi-
fication and Regression Tree (CART™). The perfor-
mance of these statistical methods is enhanced since
the proposed methods reduce the dimensionality of the
problems without losing important information for the
problem at hand. Here, the basis functions which are
well-localized in the time-frequency plane are used as
feature extractors. We also compare their performance
with the traditional methods using a synthetic exam-
ple.

1. INTRODUCTION

Extracting relevant features from signals is important
for signal analysis such as classification or regression
(prediction). Often, important features for these prob-
lems, such as edges, spikes, or transients, are charac-
terized by local information in the time (space) do-
main and the frequency (wave number) domain. The
best-basis algorithm of Coifman and Wickerhauser [1]
was developed to extract such local information mainly
for signal compression. This method first expands a
given signal into a dictionary of orthonormal bases,
i.e., a redundant set of wavelet packet bases or lo-
cal sine/cosine bases having a binary tree structure.
The nodes of the tree represent subspaces with differ-
ent time-frequency localization characteristics. Then
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a complete basis called a best basis which minimizes
a certain information cost function (e.g., entropy) is

searched in this binary tree using the divide-and-conquer
algorithm. This cost function measures the flatness of
the energy distribution of the signal so that minimizing
this leads to an efficient representation (or coordinate

system) for the signal. Because of this cost function,

the best-basis algorithm is good for signal compression

but is not necessarily good for classification or regres-

sion problems.

2. LOCAL DISCRIMINANT BASES

2.1. Measures of Discrimination Power

For classification, we need a measure to evaluate the
discrimination power of the nodes (i.e., subspaces) in
the tree-structured bases. There are many choices for
the discriminant measure D (see e.g., [2]). One natural
choice is the so-called relative entropy (also known as
cross entropy or Kullback-Leibler distance). For sim-
plicity, let us first consider the two-class case. Let
p={pi}’.,, = {gi}}=, be two nonnegative sequences
with Y"p; = 3 ¢; = 1 (which can be viewed as normal-
ized energy distributions of signals belonging to class 1
and class 2 respectively in a coordinate system). Then,
relative entropy is defined as:

D(p,q) 2 Z pilog(pi/g:).

If a symmetric quantity is preferred, one can use the
J-divergence between p and q

J(p,q9) £ D(p,q) + D(q, D).

The measures D and J are both additive: forany j, 1 <
J<n,

D(p,q9) = D({p: g:v{‘h’ ?:1)+D({Pi ?=j+11{qi}?=j+1)'
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For measuring discrepancies among L distributions, a
simple way 1s to take (12‘) pairwise combinations of D.

2.2. The Local Discriminant Basis Algorithm

The following algorithm selects an orthonormal basis
(from the dictionary) which maximizes the discrimi-
nant measure on the time-frequency energy distribu-
tions of classes. We call this a local discriminant basis

(LDB).

Algorithm 1 Given L classes of training signals,
Step 0: Choose a dictionary of orthonormal bases (i.e.,
specify QMFs for a wavelet packet dictionary or decide
to use either the local cosine dictionary or the local sine
dictionary).

Step 1: Construct a time-frequency energy map for
each class by: normalizing each signal by the total en-
ergy of all signals of that class, erpanding that sig-
nal into the tree-structured subspaces, and accumulat-
ing the signal energy in each coordinate.

Step 2: At each node, compute the discriminant mea-
sure D among L time-frequency energy maps.

Step 3: Prune the binary tree: eliminate children nodes
if the sum of their discriminant measures is smaller
than or equal to the discriminant measure of their par-
ent node.

Step 4: Order the basis vectors by their discrimination
power and use k (K n) most discriminant coordinates
for constructing classifiers.

The selection (or pruning) process in Step 3 is fast, i.e.,
O(n) since the measure D is additive. After this step,
we have a complete orthonormal basis LDB.

Proposition 1 The basis obtained by Step 3 of Algo-
rithm 1 mazimizes the additive discriminant measure
D on the time-frequency energy distributions among all
the bases in the dictionary obtainable by the divide-and-
conguer algorithm.

See [3] for the proof.

3. LOCAL REGRESSION BASES

For regression problems, we need a different measure to
access the goodness of the subspaces. Here, we use re-
gression (or prediction) error as a criterion: the smaller
the error using a chosen regression method on the data
belonging to a subspace, the better that subspace is. In
particular, we use residual sum of squares (i.e., €2 er-
ror); however, one may use other type of error measure
as well, e.g., £} error. As a regression method used at
each subspace, we use CART [4] in this paper. Again,
one may use any other type of regression method such

as linear regression, artificial neural networks, etc. We
note that the prediction error computed from the union
of the two subspaces is not equal to the sum of the in-
dividual errors at these subspaces in general since the
prediction error is not an additive measure. In contrast
with the LDB algorithm of the previous section where
the statistical (classification) method is used after the
basis selection, the algorithm described in this section
integrates the statistical (regression) method into the
basis selection mechanism.

Algorithm 2 Given a training dataset,

Step 0: Choose a dictionary of orthonormal bases (as
Step 0 of Algorithm 1).

Step 1: Ezpand each signal into the tree-structured sub-
spaces.

Step 2: At each node, invoke a regression method R, fit
a model, and then compute the residual error between
the given response vector and the prediction using-the
expansion coefficients in this node.

Step 3: Prune the binary tree: eliminate children nodes
if the prediction error computed from the union of the
coefficients at these nodes (using the same method R)
is larger than that of their parent node.

Step 4: Use k (< n) most important basis functions for
the problem at hand.

We refer to the basis thus obtained as the local re-
gression basis (LRB) relative to R. Unlike LDB, LRB
may not give the smallest prediction error (using R) in
the set of all possible bases obtainable by the divide-
and-conquer algorithm from the dictionary. This is
not because the prediction error is non-additive but
because the best prediction error of the union of the
two individually-best subspaces may not be necessar-
ily smaller than that of the union of the two subspaces
each of which is not individually-best by itself (see also
[5]). In this sense, the LRB is still a first step toward
the solution to general regression problems using the
best-basis paradigm. Step 4 is the so-called “selection-
of-variables” problem. The MDL criterion [6] may be
a good candidate for obtaining the optimal k.

4. AN EXAMPLE

We applied our methods to the triangular waveform
classification problem often referred to as “waveform”
described in [4]. The dimensionality of the signal was
extended from 21 in {4] to 32 for the dyadic dimension-
ality requirement of the bases under consideration. We
generated 100 training signals and 1000 test signals for
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Figure 1: Five sample waveforms from (a) Class 1, (b)
Class 2, and (c) Class3.

each class by the following formula:

M (i) = uhy(3) + (1 — u)ha(é) + €(i) for Class 1,

£ (3) = uhy(3) + (1 — u)h3(¢) + €(i) for Class 2,

£®)(4) = uhy(i) + (1 — u)ha(i) + €(i) for Class 3,
where i = 1,...,32, hy (i) = max(6 —|i—7},0), h2(?) =

hi(: — 8), ha(¢) = hi(i — 4), u is a uniform random
variable on the interval (0,1), and €(i) are the stan-
dard normal variates. Figure 1 shows five sample wave-
forms from each class. We first constructed an LDA-
‘based classifier and Classification Trees (CTs) (with
and without pruning) using the training signals rep-
resented in the original coordinate (i.e., standard Eu-
clidean) system, and computed resubstitution (or ap-
parent) error rates. We used the pruning algorithm
based on the MDL principle described in [3]. Then we
fed the test signals into these classifiers and computed
the error rates. Next we computed the LDB (with
the 6-tap coiflet filter [7]) using the training signals.
Then we selected five individually-most-discriminant
basis vectors, and used these coordinates to construct
an LDA-based classifier and CTs. Finally the test sig-
nals were projected onto the subspace spanned by these
selected LDB vectors and then fed into these classifiers.
In Figure 2, we compare the top five vectors from LDA
and LDB. Only top two vectors were useful in LDA in
this case. The top five LDB vectors look similar to the
functions h; or their derivatives whereas it is difficult
to interpret the LDA vectors. For LRB, we used CT
and misclassification rates as a regression method R
and regression errors, respectively. At each subspace,
we examined two possibilities: one is to use the fully-

Figure 2: Plots from the analysis of the example “wave-
form”: (a) Top five LDA vectors. (b) Top 5 LDB vec-
tors. (c) The subspaces selected as the LDB.

grown CT, the other is to use the pruned CT. Also,
for the final over all classification given the LRB coor-
dinates, we applied both the fully-grown and pruned
CTs. The best LRB result was obtained by the fully-
grown CT on all the LRBP coordinates. Here LRBP
means the LRB selected by Algorithm 2 with pruned
CT as R for subspace evaluation. Figure 3 shows these
selected coordinates as well as the subspace pattern.

The misclassification rates are summarized in Ta-
ble 1. The best result so far was obtained by applying
LDA to the top 3 LDB coordinates. We note that ac-
cording to Breiman et al. [4], the Bayes error of this
example is about 14 %. Comparing with the LDB and
LRB methods from these results, we observe the fol-
lowing: (1) The misclassification rates except the one
by the LDA-based classification in Table 1 are compa-
rable, and (2) seven functions out of 11 LRB functions
shown in Figure 3 a have larger scale features than the
top 5 LDB functions. In fact the LRB functions try
to combine the elementary triangular waves hy, ho, hs,
e.g., the LRB function #6 has two major positive peaks
around the functions h; and hs and a major negative
peak around hg.

The details as well as other examples and applica-
tions of LDB/LRB can be found in [3], [8], and [9].

5. CONCLUSION

We have described two algorithms to construct adap-
tive local orthonormal bases for classification and re-
gression problems. The basis functions generated by
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Figure 3: (a) The best LRB functions for the example
“waveform.” (b) The selected subspaces as the LRB.

Method Error rate (%)

Training Test
LDA on STD 13.33 20.90
FCT on STD 6.33 29.87
PCT on STD 29.33 32.97
LDA on LDB5 14.33 15.90
FCT on LDB5 7.00 21.37
PCT on LDB5 17.00 25.10
FCT on LDB 7.33 23.60
PCT on LDB 17.00 25.10
FCT on LRBF 4.33 24.33
PCT on LRBF 17.00 25.10
FCT on LRBP 4.33 22.13
PCT on LRBP 16.67 25.00

Table 1: Misclassification rates of the example “wave-
form”. In Method column, FCT and PCT denote the
full and pruned classification trees, respectively. STD,
LDBS5, and LDB represent the standard Euclidean co-
ordinates, the top 5 LDB coordinates, and all the LDB
coordinates, respectively. LRBF and LRBP represent
all the LRB coordinates obtained by the subspace eval-
uation using FCTs and PCTs, respectively. We do not
show the error rates of LDA on all the LDB coordinates
since this is the same as the ones of LDA on STD the-
oretically. The smallest error on the test dataset is
shown in bold font.

these algorithms can capture relevant local features (in
both time and frequency) in data. These bases pro-
vide us with better insight and understanding of re-
lationships between the essential features of the input
signals and the corresponding outputs (class names or
response values), and permit us to build rudimentary
data-driven models. Therefore, they can enhance both
traditional and modern statistical methods. The LDB
method is computationally faster and generated a bet-
ter result to the specific example used here; on the
other hand, the LRB method is more flexible and gen-
eral than the LDB method although it is more compu-
tationally intensive than the LDB method.
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