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ABSTRACT

This paper discusses a discrete-time modeling technique where
the length of time delays can be arbitrarily adjusted. The new
system is called a fractional delay waveguide model (FDWM),
Formerly, FDWMs have only been implemented with FIR-type
fractional delay filters. We show how an FDWM can be imple-
mented using allpass filters. We use low-order allpass filters
that are maximally-flat approximations of the ideal delay. The
advantages of the allpass approach are computational efficiency
and reduced approximation error. The proposed structure can be
applied to discrete-time modeling of acoustic tubes, such as the
human vocal tract or resonators of musical instruments.

1. INTRODUCTION

A discrete-time model of an acoustic tube system is traditionally
constructed by approximating the profile of the tube using uni-
form sections of fixed length. The resulting tube system is then
modeled by a digital lattice or ladder filter. This approach was
first used for modeling the human vocal tract by Kelly and
Lochbaum [1] and it has become a popular area of research (see,
e.g., [2], [3]). Smith has recently generalized this approach to a
class of techniques that he calls digital waveguide modeling [4].
A digital waveguide stands for a bidirectional delay line. Smith
has shown that this methodology gives a way to directly simu-
late real-world systems using a discrete-time model. In addition
to vocal tract modeling, the method is suitable to simulation of
other one-dimensional resonators, such as musical wind instru-
ments.

It has been noticed, however, that there is a severe limita-
tion in the basic Kelly-Lochbaum scheme: the total length of
the vocal tract is quantized according to the sampling interval
and thus it cannot be changed smoothly. Strube [5] proposed
that one of the unit delays of the lattice filter could be replaced
by a fractional delay (FD) element, that is, a digital filter that
approximates a delay smaller than a unit delay. Another possi-
bility for accurate control of the total length is to change the
sampling rate of the system by using interpolation [6], [7].

We have found that neither of the above methods is adequate
for obtaining an accurately controllable vocal tract model. The
remaining problem is that the length of individual tube sections
cannot be controlled independently. In Strube’s model, only
one section is continuously controllable. The change of the
sampling rate scales the length of all tube sections by the same
factor.
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Recently, we have proposed a method for changing the posi-
tions of the scattering junctions of a Kelly-Lochbaum (KL)
model continuousty [8], [9]. Consequently, the length of every
tube section (as well as the total length of the tract) can be con-
tinuously varied. The model employs a nonrecursive interpola-
tion technique together with a new technique that we call dein-
terpolation [8]. We call the resulting system a fractional delay
waveguide model (FDWM) and it can be interpreted as an exten-
sion to Smith’s framework.

In this work we study the possibility of applying allpass FD
filters to the implementation of an FDWM. Earlier we have
investigated the use of FIR interpolators for this task [8], [9].
The advantages of FD allpass filters over the FIR interpolators
are that 1) the approximation error in magnitude is zero and 2) a
good result is obtained with a low-order filter.

This paper is organized as follows. Section 2 discusses
maximally-flat approximation of fractional delay using FIR and
allpass filters. In Section 3 we review the FIR filter implementa-
tion of FD waveguide models. The new allpass filter FDWM is
introduced in Section 4. Its performance is compared with those
of an ideal waveguide model and an FIR implementation and the
effects of the approximation errors are discussed.

2. MAXIMALLY-FLAT APPROXIMATION OF
FRACTIONAL DELAY

The frequency response of a discrete-time delay element is
H(e/®)= ¢ /oD (1

where @ = 2nfT is the normalized radial frequency (with sam-
pling interval T) and D = floor(D) + d is the total delay with frac-
tional delay d. The frequency response of the ideal discrete-time
delay element given by (1) corresponds to a linear-phase allpass
system. The impulse response of this system is a shifted (by D)
and sampled sinc function, which is a two-sided infinite-length
sequence. In practical applications some digital filter approxi-
mation for the fractional delay must be used. A tutorial on FIR
and IIR FD filter design techniques has been written by Laakso
et al. [10].

Audio signals have often more energy at low frequencies
than at high frequencies. Thus, in audio signal processing it is
recommendable to use an FD approximation that has smallest
error at low frequencies. In maximally-flat (MF) approximation
the error can be set equal to zero at @ = 0. The MF FIR approxi-
mation to the FD is equivalent to the classical Lagrange interpo-
lation [10]. Below we discuss the corresponding allpass filter
approximation.
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Fig. 1. Phase delay (solid curve) of (a) the first-order and (b) the second-order MF allpass FD filter for several values of delay D.

The dotted line shows the nominal phase delay for each case.

2.1. Maximally-Flat Allpass FD Filter

An allpass filter is well-suited to FD approximation because
its magnitude response is equal to unity. The transfer function
A(z) of an Nth-order discrete-time allpass filter is written as

-(N-1) +Z~N

ay +aN_lz'1+...+alz @)
N

“(N-

A(2)=

l-+-a1z,'l +...+ay_12 Dyayz

A method for the design of MF FD allpass filters has been
introduced in [11] and [10]. A remarkable feature of this design
is that the filter coefficients can be given in a closed form, that
is [12]

a =(—1)"(N)]£[————D'N+"
k k) oD-N+k+n

fork=0,1,2,....N (3)

where N is the order of the allpass filter and D is the desired

delay.
The coefficient of the first-order MF allpass FD filter is
1-D
=—" 4
“ETD )

The coefficients for the second-order filter are given by

D-2 _(D=1(D-2)

= 3)
D+1 (D+1)(D+2)

ay=-2 a
Figure 1 shows the phase delay response 7,(®w) = -O(w)/@ of
these simplest allpass FD filters for several values of D.

In the first-order case (N = 1) the best approximation is
obtained when the desired delay D is near to 1 (see Fig. 1a).
When D = 0 the pole and the zero of the allpass filter are on the
unit circle and the filter is asymptotically unstable—a situation
which should be avoided. When N = 2, the approximation is
most accurate near to D = 0 or D = 2.0 (see Fig. 1b). Also now D
= 0 leads to potential stability problems.

3. FRACTIONAL DELAY WAVEGUIDE MODEL

Fractional delay waveguide modeling is a general framework for
design and implementation of models of one-dimensional wave
propagation in physical systems. It has been applied to compu-
tational modeling of the human vocal tract and woodwind
instruments [9], [12]. The novel idea of this technique is the use
of fractional delays for two purposes: to adjust the length of
digital delay lines and to adjust the locations of junctions of
waveguides.

Figure 2a illustrates scattering at the joint of two acoustic
tubes of different diameter. The reflection coefficient r is deter-
mined by the cross-sectional areas Ay and Ay, of the two tubes
so that r = (Ag — Age1)/(Ag + Apyy). The scattering junction can
be equivalently implemented using only one multiplier as
depicted in Fig. 2b. In an FDWM, the scattering junction can be
located at a noninteger point of a digital waveguide (i.e., bidi-
rectional delay line). In FIR filter implementation of an FDWM,
the interpolated scattering junction is based on the one-multi-
plier junction of Fig. 2b, but the allpass filter implementation
which is presented in this paper is based on the four-muitiplier
junction of Fig. 2a.

Figure 3a illustrates a scattering junction between the sam-
pling points of a digital waveguide. The four FD elements are
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Fig. 2. (a) Scattering junction between two acoustic tubes of
different diameter and (b) its one-multiplier version.
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explicitly shown. The delay § is defined by

é=1-d (6)
and 1s called the compiementary fractional delay (CFD) [12].
3.1. FIR Filter Implementation of FDWM

Formerly, FDWMs have been implemented using Lagrange
interpolators [8], [9], [12]. The interpolated input into a digital
delay line has been realized using deinterpolation {8], which is a
new technique in signal processing. It is implemented using the
transpose FIR filter structure with interpolating coefficients. Its
impulse response, however, has to be time-reversed because a
deinterpolator approximates the complementary FD &. The two
nonrecursive interpolators and the two deinterpolators can be
combined, and thus only two interpolating FIR filters per FD
junction are required (see [12] for details).

4. ALLPASS FILTER IMPLEMENTATION OF
FRACTIONAL DELAY WAVEGUIDE MODEL

4.1. Derivation of the FD Junction Structure

Figure 3b shows a modified version of the junction depicted in
Fig. 3a. Now the four FD elements have been pushed through the
adders and branch nodes. This can be done because linear time-
invariant systems commute. Now there are altogether eight FD
elements. The FD elements z~¢ and z-% can be combined into a
single unit delay element (since d + & = 1) both in the upper and
in the lower line (see Fig. 3c). The two FD elements z~¢ on the
left of Fig. 3b can be combined into a single block z-24, and the
same is possible to do for the two CFD blocks on the right.

The block diagram presented in Fig. 3c is one possible all-
pass implementation of the FD junction. Other configurations
can also be derived, but this one has some desirable properties.
We realize the “double” fractional delay elements using allpass
filters Ap(z) and A,(z). Consequently, the desired delay D and
complementary total delay A are defined by

D=2
A=286=2-D

(Ta)
(7b)

This implies that when the noninteger part d of the position of
the junction can have values on the interval [0, 1], the delays
implemented by the two allpass filters will have values on the
interval [0, 2].

4.2.

Let us consider the approximation error due to allpass inter-
polators. In the structure of Fig. 3c, there are no FD elements in
the straight path in neither direction. Thus there is no approxi-
mation error in the transmission function through the FD junc-
tion. The only limitation that this solution brings about is that
the point where the transmission occurs is not explicitly
implemented and the signal value at that point cannot be
directly obtained. At the open end of a tube this causes an error
in the delay of the output signal. This does not affect the for-
mant structure nor other important properties, but can be
avoided—if desired—by incorporating an additional FD filter.

Transmission Function
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Fig. 3. Derivation of the FD scattering junction employing
commutation. (a) The original FD scattering junction. (b) The
FD elements have been pushed through the branch nodes and
adders. (c) The structure that is implemented.

4.3. Reflection Function

The reflection from the FD junction suffers from an error
since the “double” FDs are realized using digital filter approxi-
mations Ap(z) and Ax(z). When MF allpass FD filters are used,
the nature of this error can be predicted from Fig. 1. At very low
frequencies the impedance discontinuity seems to be in the cor-
rect position, but with increasing frequency, the junction tends
to move towards some other location. This is because the all-
pass filters approximate the delay accurately at low frequencies,
but poorly at high frequencies. We may assume that at low fre-
quencies the formant structure of a tube model implemented with
these allpass filters is similar to the ideal one, but at higher
frequencies the center frequencies of formants are incorrect.

4.4. Comparison of Implementation Techniques

In order to compare the properties of allpass and FIR implemen-
tations, we simulated a two-tube model with one FD junction.
The total length of the tube system is 8 unit delays. The junc-
tion between the tubes is located between the 3rd and the 4th
unit delay. The reflection coefficient is ~0.5. One end of the
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Fig. 4. Transfer function of a two-tube system realized using

(31

second-order allpass filters (solid line), third-order Lagrange
interpolation (dashed line), and ideal interpolation (dotted line).

(4]

tube is assumed to be closed and the other one open. To simplify

the example, the terminations have been approximated with

(51

purely resistive loads, r; = 0.9 and r; = -0.9. Second-order all-
pass FD filters were used because the approximation error

obtained with first-order filters was considered too large.

Figure 4 shows the magnitude of the transfer function of this

(6]

system. The solid line is obtained using second-order MF all-
pass FD filter and the dashed line using third-order Lagrange
interpolation. The dotted line is the transfer function of a sys-

tem that employs ideal interpolators. The sampling rate is 22
kHz. In this example d = 0.4 which is nearly the worst case for

(71

both the second-order allpass filter and Lagrange interpolation.
The transfer functions are nearly identical at low frequencies,
but above 5 kHz the curve obtained using Lagrange interpola-

tion (dashed line) deviates from the others. At highest frequen-

(8]

cies all the curves go their own ways. The magnitudes of the for-
mants of the allpass system do not, however, deviate from the

ideal curve as much as for the Lagrange interpolator.

The computational complexity of the allpass filter imple-

{91

mentation is less than that of the FIR filter implementation: a-
second-order allpass filter can be realized with 2 multiplications

and 3 additions, whereas a third-order FIR filter takes 4 multipli-

cations and 3 additions.

5. CONCLUSIONS AND FUTURE WORK

We have introduced a new method to realize a fractional delay

110]

[11]

waveguide model (FDWM) where the time delay between scatter-
ing junctions can be continuously controlled. In this approach
the FD elements are implemented using low-order allpass filters
that are maximally-flat approximations of ideal interpolation.

This method is more efficient and more accurate than an FDWM

(12]

implemented using Lagrange interpolation. In the future, the
behavior of the allpass FDWM should be analyzed in the case

when the positions of the junctions are slowly changing.
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The allpass FDWM was shown to be suitable for construct-
ing high-quality models of physical systems. This approach
may be used, e.g., for implementing model-based sound synthe-
sis of wind instruments or an articulatory speech synthesizer.
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