AN EFFICIENT ALGORITHM TO FIND A JOINTLY OPTIMAL TIME-FREQUENCY
SEGMENTATION USING TIME-VARYING FILTER BANKS

Cormac Herley ', Ziziang Xiong * and Kannan Ramchandran® and Michael T. Orchard ?

! Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304
2 University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801

ABSTRACT

We examine the question of how to choose a time-varying
filter bank representation for a signal which is optimal with
respect to an additive cost function. We present in detail
an efficient algorithm for the Haar filter set which finds
the optimal basis, given the constraint that the time and
frequency segmentations are binary. Extension to multiple
dimensions is simple, and use of arbitrary filter sets is also
possible. We verify that the algorithm indeed produces a
lower cost respresentation than any of the wavelet packet
respresentations for compression of images using a simple
Rate-Distotion cost.

1 INTRODUCTION

We address the problem of designing a linear transformation
to make the task of compressing a signal easier. That is,
given a fixed signal x, and a fixed cost function Cost(.), we
seek an orthogonal transformation A, such that Cost(A - x)
is small. An unconstrained search over all possible uni-
tary A is not feasable, so we will restrict our attention to
some library of transformations, with the properties that
(a) we can search for the least-cost member of the library
efficiently, and (b) we can transmit a description of any
member for little additional cost.

The libraries of transformation that we use will be based
on orthogonal filter bank tree structures. Paraunitary filter
banks carry out an orthogonal transformation of the signal,
and trees constructed from them correspond to bases where
the trade-off between time and frequency resolution for the
basis functions depends on the structure of the tree. This
approach to viewing tree structured bases as tilings of the
time-frequency plane is explored in [2].

An example of a tree structured basis built from a two
channel filter bank is shown in stage 1 of Figure 1, which
is a uniform tree grown to a depth of three for a signal of
length 8. A tree of this kind is the starting point for the
algorithms we will consider. An algorithm was used in [1, 5]
which pruned this tree based on comparisons between the
costs of pairs of branches at one level and the cost of their
parent branch at the previous level. This gave the best
wavelet packet, or best frequency selective tree that could
be found for that signal with respect to the chosen cost func-
tion. A “double-tree” generalization of this in [2] aimed at
overcoming the restriction that the trees remain invariant
for the duration of the signal, and searched a larger library
of bases. In this work we find it possible to improve on that
algorithm, and present a scheme for searching a larger li-
brary of bases for little additional complexity. We illustrate
in detail the simplest form of the algorithm, which involves
it’s use for block transforms. A scheme developed by Ville-
moes [6] to find the best Walsh basis for a continuous-time
signal appears to be closely related.

0-7803-2431-5/95 $4.00 © 1995 IEEE

2 THE BLOCK TIME-FREQUENCY
ALGORITHM

We will illustrate the algorithm using the Haar filters,
where Ho(z) = (1 + 271)/v/2 and Hi(z) = (1 — z7%)/V2.
Filters like this, where the filter length is equal to the num-
ber of channels, are called block transforms because the low
and high outputs are related to the input by a block oper-

ation
(b‘-)]2) [] 1] ' (4)
b,‘+N/2 ,\/_ 1 -1 a2i41 :

The operator A = 1/4/2[1 1;1 — 1] is often thought of as
mapping time domain points to frequency domain points.
An advantage of block transforms is that no special treat-
ment is necessary at the boundaries, and the decomposition
can be performed on finite length signals without complica-
tions. Thus, in the case of the tree for an eight point signal
as shown in stage 1 of Figure 1, (bo b4) is the transformed
version of (a0 @1), grbl bs) is the transformed version of
(az a3) and so on. The coeflicients b; are transformed in
pairs to give the c;; these are transformed in pairs to give
the d;, the deepest level of the tree.

In order to choose a basis, we must select eight coefficients
from the total of 32 represented by the a;,b;,c; and d; (in
general for a signal of length 2’ we must select 2’ from
(7 + 1)27). We cannot just select the 8 coeflicients with
the lowest cost, since to form a basis they must be the
coeflicients of 8 mutually orthogonal basis functions. In the
case of the Haar filters two basis functions are orthogonal
if their coeflicients do not share a common ancestor. For
example, ao and b4 could not appear together in the same
basis, since (bo,bs) is found by transforming (a¢,a;), and
hence ag is an ancestor of bs.

Since we have a two-tap filter, the points at the second
level (the b;) depend on only two points in the first level {the
ai), so we can compare the a; and the b; in pairs, without
any consideration of the neighbouring pairs. The same is
true of the other levels of the tree: each ¢; depends on only
two bi, and so on. In general we can compare points from
level k and level k¥ + 1 in pairs. We illustrate the situation
in Figure 1 stage 1. For level 1 vs. level 2 we write the cost
of the winners

ei = min(Cost(azi, @2i+1), Cost(bi, bits)). (1)
Similarly for level 2 vs. level 3 (p = 2(¢/2 — |i/2])
fi = min(Cost(bzi, bzi11), Cost(caimp, c2ita—p))y (2)
and finally
gi = min(Cost(czi, c2i41), Cost{dzi, d2it1)). (3)

1516

We have written the winners of the decisions of stage 1,
as a new cost tree as shown in Figure 1 stage 2, which has
one less level than the tree we started with. The new tree is
populated with the costs of the winning pairs from the first
stage. Since (e2:,e€2i41) and gf;,f.‘.;,g) represent the costs
of alternative representations for sets of four points in the
original signal, we can compare the e; and the f; in pairs
just as we did the a; and the b; in (1). Similarly the f;
and the g; can be compared in pairs much as in (2). This
reduces the size of the problem by another level. Thus, after
two stages we have reduced it to a two point problem and
the winning cost will be

Cmin = min(Cost(ho, h1), Cost(to, 11)). (4)
Level: 1, 2 3 4
d
Stage &E

by bs bg by

;
dg
ds

3

1
dy

ap a) 2 a3 44 a5 A4 2y,
d
C2€3 I
d,
d
T[:
LE ®
2 g2

€01 €263

by by by b3

3 hy by it

4 Cmin

Figure 1: The Block Time-frequency algorithm for an eight
point signal and a two-point block transform. The original
tree (stage 1) has 4 levels; we compare the costs in pairs
between adjacent levels, and store the cost of the winner
in stage 2. Stage 2 has a cost tree of three levels. Again,
comparing costs in pairs gives stage 3 which is a trivial
two-point problem.

The heart of the algorithm is then for each block of points
in a tree, compare the cost of the block to the cost of the
transformed block, and keep the cost of the winner. This
is done for each level in the tree, and for each stage in the
algorithm. At stage k the first level of the cost tree contains
the best costs if the tree were constrained to have depth less
than or equal to stage k. If the original signal is of length
27, and the problem is reduced by 2 at each stage, we will
have reduced it to a one-point problem after j stages. This
last number is the overall cost. At any stage we thus deal
with a tree over a 2?7°%%9°+1 point signal, so we will have
{7 — stage + 1) levels; at each level there will be 2/ *tase
blocks. Our forward algorithm is thus (assuming that the
stage 1 cost has been calculated):

1517

for stage = 1:j
for level = 1:(j-stage+1)
for block = 1:2°{j-stage}
time = Get_cost(stage,level,block);
freq = Get_tr_cost(stage,level+1l,block);
if time <= freq
Put_cost(stage+1,level,block) = time;
Put_win(stage+1l,level,block) = 0;
else
Put_cost(stage+1,level,block) = freq;
Put_win(stage+1,level,block) = 1;
end
end
end
end

In the pseudocode description of the algorithm we leave
unspecified the data structure to store the costs at the
various stages. We merely assume that the function
Get._cost(stage,level,block) returns the cost of the block
at the appropriate stage and level and that the func-
tion Get._tr_cost(stage,level+1,block) returns the cost of
the transformed block (which is one level deeper). Simi-
larly, Put_cost(stage+1,level,block) stores the winning cost
to be used at the next stage, and we record whether
the winning decision was “time” or “frequency” with
Put_win(stage+1,level,block) = 0 or 1. Extension to longer
block transforms is trivial. :

The single number that is the output of the forward al-
gorithm, Cost(j+1,1,1) is the cost of the winning basis. To
use this we need to know in addition which of the coeffi-
cients should be sent to the decoder, and a description of
the time-varying tree. The decoder should then receive the
quantized coefficients, put them into the inverse tree and
reconstruct the signal at the advertised cost. To determine
the coefficients to send we employ an algorithm that works
backwards through the decisions made by the forward al-
gorithm. Essentially, we retrace the winning decisions and
eliminate all of the coefficients that contributed only to the
losing cost for each decision.

Observe from the forward algorithm, that the cost at
stage k, level [depends on a block from stage k — 1 at level
lorl+1. Once we know that the decision that generated
the cost at stage k, level I was “time” (resp. “frequency”)
we can eliminate a block of cost points from stage k — 1 at
level I+ 1 (resp level I}. This eliminated block implies that

we can eliminate 2 blocks at stage k — 2, and 25~ blocks
from the original stage 1 cost tree. Our reverse algorithm
is to step through the stages in reverse order; at each level,
and for each block we retrieve the decision that led to that
cost. This allows us to eliminate points in the original stage
1 cost tree that did not contribute to that cost. When
eliminating points in the cost tree, we also eliminate points
in the winner tree, so that we don’t waste time tracing the
decisions that led to points that were ultimately eliminated.
In summary the reverse algorithm is:

for stage = j:~-1:1
for level = 1:(j-stage+1)
for block = 1:2°{j-stage}
if Get_win(stage,level,block) ==
Elim_coeff(1,level+stage, block);
Elim_win(stage-1,level+1,block);
elseif Get_win(stage,level,block) ==
Elim_coeff(1,level, block);
Elim_win(stage-1,level,block);
end
end
end
end

We again illustrate the idea for the same eight point sig-
nal as before. Consider (4) which is the last decision of the
forward algorithm, and suppose that the outcome was “fre-
quency,” which implies that io 411 < ho + k1, the final cost
is 10 +11 and we can eliminate all of the e; from stage 2, and
all of the a; from stage 1, since these do not contribute to
the winning cost. Even though we do not yet know the co-
efficients of the best basis, we can already eliminate these,
based on the last decision. Equally, if we wish to construct
a time-frequency tiling we can now draw a horizontal line
to represent the single frequency split; this has been done
in Figure 2 (a), where the surviving trees are depicted in
the upper and lower branches.

At the next stage we have two decisions, the results of
the decisions between the f; and the g; (those between the
e; and the f; are no longer of interest). Suppose that the
decision for the lower frequency branch is fo + f1 < go + g1;
this implies that we can eliminate do, - - - d3 since these con-
tribute only to the losing cost. Similarly if the decision for
the upper branch was f2 + f3 > g2 + gs we can elimiate
by - --b7. The eliminations have been carried out in Figure
2 (b) where the lower frequency branch has been split in
time and the upper in frequency. Finally, when we have re-
traced as far as stage 1, the remaining decisions affect only
two points, and the winning costs are shown in Figure 2 (c).
An example of the the tilings generated by the wavelet ex-
pansion, the best single-tree expansion, and the expansion
produced by the new algorithm are shown in Figure 4. As
cost function we used mean squared error when all coeffi-
cients were quantized using a uniform quantizer of step size
2. The darkness of a tile represents the magnitude of the
cost of the corresponding basis function.

2.1 Extent and complexity

Since the goal of this work was to improve on the al-
gorithms in [1, 5] and [2] it is natural to ask how the al-
gorithm compares, both in terms of the number of bases
that it searches, and in terms of complexity of the search
operation. In Table 1 recursions are given for the number
of bases searched by each of the mentioned algorithms; in
each of the cases we assume a signal that has length equal
to a power of 2, and use of the Haar filters. The number
of bases grows extremely quickly as function of the length
of the signal. For example for a signal of length 64 points,
using the Haar filters, there are 2.1e 4 11 singletree bases,
9.8¢ + 14 double-tree and 6.4e + 16 Block Time-frequency
bases. The order of the computational complexity for a sig-
nal of length N and tree of depth d is O(Nd) for the single-

tree algorithm, O(Nd?) for the double-tree and O(Nd) for

the Block Time-frequency algorithm, and O(N2?) for the
non-block version.

A further point of interest is the nature of the split-
tings generated by the algorithms. As mentioned earlier
the time-frequency segmentations of [1, 5] were stationary:
we get one split for the whole signal. Those of [2] are il-
lustrated in Figure 3 (a), where we perform arbitrary bi-
nary frequency splits over various time segments. Observe
that there is some asymmetry about the splits generated,
in that there are many frequency splitting trees grown over
time segments, but the converse is not true. This is recti-
fied by the Block Time-frequency algorithm which gives the
time-frequency segmentations shown in Figure 3 (b).

2.2 Non-block transforms

The Block Time-frequency algorithm represents an effi-
cient way of carrying out the time-frequency splits illus-
trated in Figure 3 (b), for the case of block transforms.
The key to making the algorithm simple was the fact that
no special treatment is necessary at the boundaries in block
transforms, and the tree can be varied at will. When non-
block transforms are used special consideration is necessary
if we wish to change the structure of the tree.

b, by b b s

ds

bg by b3 by

(a) B

d;
d
de
dy
dg
ds
d,

==
=1L

cz <3
be b, co bz by I €
(b)
[<7
dg
d4
<3
bo by
€3
(c)

Figure 2: The backtracking algorithm to determine the co-
efficients of the least cost basis for an 8 point signal. (a) Af-
ter stage 3,frequency segmentation decision, and cost trees
for the low and high frequency regions. (b) After stage
2 segmentations with cost trees in each region. T<‘C) After
stage 1, the trees are reduced to single points. These are
the coefficients to be sent to the decoder.

5T S OEE SN OEY,
DT D(N) = D(N/Dzz; +5() - SV/2),
TF tree | F(N) =2+ F(N2)° — F(N/a), F(2) = 2

Table 1: Comparison of number of bases searched by the
Single-tree, Double-tree and Time-frequency tree (assume
the Haar filters are used.)

1518

ABDCD
i

Figure 3: The time and frequency splits of the double-tree
and Block Time-frequency algorithms. (a) Double-tree (b)
Block Time-frequency.

We can for example use the orthogonal boundary filters de-
veloped in [3]. Also we can no longer use the algorithm
directly; however, we can carry out the equivalent split-
tings as in Figure 3 (b) using non-block filters. In general
the complexity of the algorithm will be greater than in the
block transform case, but the increase need not be pro-
hibitive, especially if we restrict the tree to some maximum
depth. This is reasonable in practice, as we generally do not
wish to continue splitting to the point where the subsignals
become extremely short. The algorithm and complexity are
explored in [4].

3 EXPERIMENTAL RESULTS

Using the extension to two-dimensions, and length-4
Daubechies filters we compressed a composite image made
up of “Lena”, “House”, “Aerial” and “Scene” and also the
images “Lena” and “Barbara.” Using Rate + Distortion
as cost, first order entropy as rate, and a single uniform
quantizer we get the experimental results listed in Table 2.

REFERENCES

[1] R.R. Coifman and M.V. Wickerhauser. Entropy-based
algorithms for best basis selection. IEEE Trans. Infor-
mation Theory, 38(2):713-718, March 1992.

[2] C. Herley, J. Kovacevié, K. Ramchandran, and M. Vet-
terli. Tilings of the time-frequency plane: Construction
of arbitrary orthogonal bases and fast tiling algorithms.
IEEE Trans. on Signal Proc., 41(12):3341-3359, Dec.
1993.

[3] C. Herley and M. Vetterli. Orthogonal time-varying fil-
ter banks and wavelet packets. IEEE Trans. on Signal
Proc., 42(10):2650-2663, Oct. 1994.

[4] C. Herley, Z. Xiong, and K. Ramchandran. Joint space-
frequency segmentation for least-cost image representa-
tion. [EEE Trans. on Image Proc., 1994. Submitted.

(5] K. Ramchandran and M. Vetterli. Best wavelet packet
bases in a rate-distortion sense. IEEE Trans. on Image
Proc., 2(2):160-175, 1992.

[6] L. Villemoes. A fast algorithm for adapted Walsh bases.
Journal of Appl. and Comput. Harmonic Analysis, 1994.
Submitted.

(b)

()

Figure 4: Tilings for the expansion of a high frequency
64-point sinusoid and spike using different bases. (a) Ex-
pansion using Discrete Wavelet Transform(cost 0.1585).
§b Expansion using the single-tree algorithm (cost 0.1008
[Exgansion based on time-frequency segmentation (cost
0.0696).

composite | Lena | Barbara |

[|
rate | PSNR | rate | PSNR | rate | PSNR
PCM | 3.45 34.92 3.48 34.98 3.65 34.91
WT 1.48 36.46 0.95 37.55 1.63 36.74
ST 1.47 36.50 0.94 37.60 1.40 37.08
DT 1.44 36.53 0.94 37.60 1.40 37.08
TF 1.33 36.55 0.85 37.63 1.32 37.10

Table 2: Compression results for images using various aler-
native bases: Space domain, wavelet transform, single-tree,
double-tree and Time-frequency tree.

1519

