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Abstract

Complete parametrization of multiband linear phase
biorthogonal filter banks are given. The method uses
matriz reduction methods similar to the Hermite re-
duction method of linear system theory. Computa-
tional algorithms are derived for design, and ezamples
are worked out.

1 Introduction

Complete parametrization of special classes of per-
fect reconstruction (PR) filter banks, e.g., parauni-
tary and/or linear phase filter banks is an important
problem because of their interests in designing opti-
mal filters belonging that class. In spite of consider-
able amount of research in recent years, the problem
of complete parametrization of entire classes of linear
phase multiband perfect reconstruction filter bank has
remained open so far. This problem has recieved con-
siderable attention in the 2-band case in [7]. In [1] an
interesting solution to the problem of parametrizing
all paraunitary LP filter banks is given. In [2] a sub-
class of biorthogonal LP are considered in the multi-
band situation. The problem of designing multiple
band PR filter banks is known to be equivalent to the
design of symmetric (or antisymmetric) wavelets. In
this vein, the design of symmetric wavelets have been
addressed in the work of [6] both in 2-band and in the
multiple band case. In the present paper a method
of parametrization and design of complete family of
multiband LP, PR filter banks is presented by using
techniques akin to Hermite reduction method of lin-
ear system theory. The essential idea behind the algo-
rithm stems from the fact that in an M-band problem
it is almost always possible to specify N (N < M)
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of the m analysis filters arbitarily and the remaining
M — N filters can be used to satisfy the PR property
and desirable frequency characteristics as well.

2 Biorthogonal linear phase filter bank

We assume in this section and in the rest of the
paper that the indices (see the definition below) of
the subband filters N are such that N = Mni +1;
0 <1< M —1for each k. We say the filter bank is of
type [. In the M = 2 case, it can be shown that there
does not exist any PR linear phase filter bank where
No mod 2 # Ny mod 2. But the question of existence
of PR linear phase filter banks when Ng mod M are
not the same for all 0 < k < M —land M > 2 s
open. We need the following definitions.

1. If a polynomial Q(z) is such that Q(z) =
+2"Q(z71) = £Q(z), then it is called self-
(anti)symmetric polynomial with index n. Here,
the index n of a self-(anti)symmetric polynomial
Q(z) is given by n = Deg@-¢, where g is the mul-
tiplicity of the root at z = 0 of @(z) and DegQ
is the degree of Q(z). We write n = Ind(Q) for
index of Q(z)

2. If two polynomials R(z) and P(z) are related by
R(z) = +2™P(z"!) = xP(z), then they are
called cross-(anti)symmetric pair with index m.
Here, the index m of cross-(anti)symmetric pair
R(z) and P(z) is given by m = (p + DegR) =
(r + DegP), where p and r are multiplicity of
the root at z = 0 of P(z) and R(z) respectively.
We write m = Ind(R, P) for index of the cross-
(anti)symmetric pair R(z) and P(z), or simply
m = Ind(R) or Ind(P) if there is no ambiguity.

Two row vectors, h’ and h are:
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1. Structurally similar whenever h; = :i:’—lj if and
only if hj = £h} or A = Fh;

2. Index similar if, in addition to being structurally
similar, they satisfy Ind(h;)—Ind(h;) = Ind(h})—
Ind(h}) for all i and j.

where h; and A} are the i-th elements of h and h' re-
spectively. Next, we state useful facts for linear phase
and perfect reconstruction filter banks, but all proofs
are omitted for lack of space.

In a linear phase filter bank (LPFB), the polyphase
components of each filter are related in the following
way.

Fact 1 Let Hi(z) be the k-th filter of linear phase
analysis filters in M -band filter bank, and let Hy(z) =
Hi(2) (or Hi(z) = —Hi(z)) with indez Mny + 1.
Then, for each of its polyphase components Hy i(z),

i = 0,---,M — 1, the following relation holds:
Hyi(z) = :i:z""sz_ (71 for 0 < ¢ <1 and
Hy ,(Z) +2M 1 H M+1_,(z )forl+1 <1< M-1.

Fact 2 An analysis polyphase matriz corresponds to
linear phase analysis filters bank if and only if any one
of row is a valid LP row, i.e., its elements satisfy the
relation given in Fact 1 and all other rows are index
similar to this row.

If the FIR filter bank is, in addition, the perfect re-
construction (PR), then the polyphase matrices cor-
responding to these filter banks have monomial deter-
minants, and the converse is also true. In fact, we can
find explicit structure of a LP polyphase matrix, but
it is not given for lack of space. By using this and
DetH(z) = 2L, where H(z) is the analysis polyphase
matrix, we obtain the following two results.

Fact 3 If the analysis filters in an M-band PR filter
bank satisfy the conditions for LP, then the number
of symmetric and antisymmetric filters can be deter-
mined as follows:

1. Let M be odd. Then the number of symmetric
filters exceed the number of antisymmetric filters
by one.

2. Let M be even and Ind(H) = Mny + 1, 0<1 <
M — 1. Then

(a) if | is even, then the number of symmetric
filters exceed the number of antisymmetric
filters by two.

(b) if l is odd, then there are equal number of
symmetric and antisymmetric filters.

Fact 4 In a linear phase, perfect reconstruction FIR
filter bank Hy(z); 0 < k < M — 1, where Np =
Ind(Hg) = Mng +1; 0 <1 < M — 1, for each k,
the following constraint holds.

M-1
5 1
=0

We now describe the main results of this paper.

=MQ2L+M - 1) (1)

3 Linear phase reduction

Consider the situation when r analysis filters of the
analysis polyphase matrix H(z) are given, i.e., the sub-
matrix H? of size (r x M) is given. Recall that all given
filters are of the same type I/, and thus, the rows of H?
are all index similar. Furthermore, the submatrix H?
must have a full rank for every z # 0.

Let us denote the i-th column of H? by h!, , where
the subscript m; represents the lowest index among
the elements of h;'ni. For convenience, we call m;
the index of the i-th column. Note that due to the
structure of the LP polyphase matrix stated in Fact
2, min;([h'];) is the same for all values of ¢, i.e., all
elements having the smallest indices in columns al-
ways occur in the same row. We also use the following
terminology:

1. A column vector is self-conjugate if its elements
are self-symmetric or self-antisymmetric.

2. A pair of column vectors forms conjugate pair
if their respective elements are either cross-
symmetric or cross-antisymmetric.

From Fact 1, we easilly see that each column pair
{hi, b7t }for 0 < i < I and {hi, hM+~i} for

MM~

I+1< 1< M-—1 are conjugate. If l or M+I is even,
then the %-th or M-Z,j'—l-th column is self-conjugate.

Theorem 1 Let r < M filters of analysis bank be
giwven. In other words, an (r x M) submatriz, H,
of the analysis polyphase matriz is given. Assuming
that H, is of rank r for all values of z except possibly
z = 0, we can always find an (M —r) x M matriz
Hps—r such that HT = [HY H7I,_.)7 is a valid lin-
ear phase analysis polyphase matru‘ of an M-band PR
filter bank.

Conversely, if H, ts wncluded as a submairiz
of a linear phase analysis polyphase matriz, then
rank(H,) = r for all z # 0.
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We propose a simple algorithm for this which uses two
types of unimodular matrices called the transform ma-
trices. However, when r > 1, the transform matrices
may become singular which may become a some of
a problem. Under the assumption that the inverse
of transform matrices always exist in every reduction
step, we show in the following that it is possible to
construct a complete polyphase matrix H(z).
The i-th reduction step consists of the following

H:™'.Ti =H!S; (2)

where S; is a diagonal matrix of 1’s and z’s and T};"s
are descibed below.

Transform matrix T%: Let a self-conjugate column
of Hi~! have strictly larger index than that of any
other pairs of conjugate columns. If ! is even and the
%—th column is such a self-conjugate column, we use
transform matrix T?, the j-th column of which is given

by
m={P R i4E

where e; is the j-th column of (M x M) identity ma-
trix. The j-th element of t; is given as

[t‘].={ tij+ 2%t if j=0,---,1
o t,-,j+zdft,~,M+;_j if j=I1+1,--- M-1
o _ 4)
where d; = my—m;. Let H:-!-T% = H. Then, only
two columns h;77  and hy, . are different and other
columns are exactly same. Furthermore, we can show
that the j-th elements of hi,;}z and h;f;,/z have the
same index and the same symmetry. Let us choose
free parameters ¢;;, j = 0,---,M — 1, in h;flm to
satisfy the relation.

H!.t;,=0 forz=0 (5)

Here, we assume that the inverse of the transform ma-
trix TY exists, i.e., DetT} = 2t,-‘12_ # 0. If (5) is satis-
fied, then every element of h;flm has a zero at z =0
and simultaneously every leading term becomes zero
by its property of self-symmetry. Thus, H? can be
factored into H: - S;, where the diagonal matrix S;
has a z at the {/2-th entry and 1’s elsewhere.
Transform matrix T%: If a pair of conjugate
columns of H:~! in (2) has index larger than or equal
to the index of any other column, then we use trans-
form matrix T%.

When the k-th and the (I—k)-th columns form such
a column pair, where 0 < k <[, we use the transform

matrix T4, the j-th column of which is given by

. ej if j#k jEI—Fk
[Tal; =< & if j=k (6)
¢ if j=I—k

The j-th element of t; is given by

t; = Diag[J1+1 | JM—I—l] . 7

. . o (7)
where J,, is the skew identity matrix of size n x n and
dj = mp —mj = my_x — m;. Let H:.—l - ) = H:.i.
Then, we can show that the column pair {hy;,, , by, .}
is also conjugate and has the same index as the pair
{hiz} hiz! }. Next, we choose free parameters ¢; ; in

Mk ) M-k
h;, orhj | sothat one of the following equations is

satisfied.

[t:]; = ti j(1+ 2%),

H™ t;=0 or H'.t/=0 forz=0 (8)

Here, we assume that the inverse of T} exists, i.e.,
t?y # ti_p If the first one of equations (8) is
satisfied, then every element of hg,k has a zero at
z = 0 and simultanuously every leading term of ele-
ments in h:f”_k becomes zero by the property of cross-
symmetry. Thus, the matrix H” can be factored into
H: - S;, where the diagonal matrix S; has a z at the
k-th position and 1’s at other positions.

If the second equation in (8) is satisfied, then the
diagonal matrix S; has a z at the (I — k)-th position
and 1’s at other positions.

3.1 Construction of LP and PR filter
bank

In this section, we will give a method of construct-
ing the entire polyphase matrix, thus, an analysis filter
bank, satisfying the condition for linear phase as well
as the condition for perfect reconstruction form H,.
Inverse transform matrix: S; - T};.

We construct T};‘ so that the inverse matrix S; T},
has the following properties.

1. Since T}, is a unimodular, the determinant of the
inverse matrix 1s a monomial in z.

2. The inverse matrix has structure invariant prop-
erty, which is defined below

Definition 1 We consider a class of square matrices
T that right multiplies indez similar row vectors: The
mairiz T is said to be structure invariant if

1. W =h T and h are structurally similar.
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2. If hy and hy are two indezx similar rows, then
h; - T and hy-T are indez similar for any hy and
h-.

Claim 1 The inverse transform matriz S; - (T},)™!
has the structure invariant property.

Construction of polyphase matrix

By reduction method descibed above, we obtain a
matrix HY having the lowest column index, which is
given by

H =HY.T

Since similarity is a transitive property, it easily fol-
lows that T is a structure invariant matrix. Now, con-
sider a matrix F whose first r rows are HY. Since T
is a structure invariant matrix, if we choose the other
M —r1 rows of F so that they are index similar to HY,
then F - T, whose first r rows are H?, has all index
similar rows to H® by the property of structure invari-
ance. Then, since every row of H? is a valid LP row,
by Fact 2, F - T is a desired LP polyphase matrix.
However, that all rows of F - T are index similar to
h° is not enough for PR. For PR, the determinant of
F - T must be a monomial in z. Since the determinant
of T is a monomial, we need that the determinant of
F be a monomial. Thus, we select F so that the last
M — r rows are index similar to the first r rows and
its determinant is a monomial in z. In fact, F must be
the polyphase matrix of a LP filter bank of low degree.
The construction of this from the first r rows can be
conveniently accomplished by using Facts 3 and 4.

Example: We consider M = 4. The specified anal-
ysis filters are

Ho(z) = .001 — .0059z — .021822 — .0079z%+
098124 + .26452° + .34862° + 264527+

098128 — .00792° — .021821° — 005921 + .0012*2
Hy(z) = .0036 + 0195z — 026522 — .2709z%+
55082% — 270925 — .02652° + 019527 + .00362°

By following the design algorithm described above, we
obtain Ha(z) and H3(z). The frequency responses of
these 4 filters are shown in Fig. 1. While the filters
Ho(z) and Hj(z) were designed independently of the
PR requirement, low degree Ho(z) and Hjs(z) were
first obtained by the algorithm descibed above. In or-
der to achieve the bandpass and highpass characteris-
tics, higher degree solution were obtained from these.
Details are available in [8].

4 Conclusions

We have presented a complete algorithmic method
for the construction of LP, PR filter banks from a in-

complete set of arbitrarily specified subset of the filters
of the analysis bank. The algorithm is reminiscent of
Hermite reduction in system theory and can also be
shown to provide [8] a cascade-like decomposition of a
completely specified analysis bank, thus, providing a
complete parametrization of all M-band LP, PR filter
banks.
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Fig 1. The magnitude responses of analysis filters in Example
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