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ABSTRACT

This paper proposes a new family of perfect reconstruction
(PR) linear phase filter banks called the generalized
lapped transform (GLT). The GLT differs from the
traditional lapped orthogonal transform (LOT) [1] in that
it is nonorthogonal and hence offers more freedom to
avoid blocking effects and improve the coding gain. Since
the GLT can also be viewed as a generalization of the
traditional discrete cosine transform (DCT), fast
algorithms [2-4] for their implementation are also
available.

1. INTRODUCTION

Perfect reconstruction (PR) maximally decimated
quadrature mirror filter banks (QMF) has important
applications in audio and image coding. It is known that
very efficient PR FIR filter banks, the modulated filter
banks (MFB), can be obtained by modulating a linear
phase prototype filter [5-7]). However, the resulting
analysis and synthesis fiiters are in general not linear
phase. In [8], it was found that the simplicity of the
modulated filter banks is closely related to the structural
constraints imposed on the polyphase matrix. By
exploiting the concept of structural PR, general linear
phase orthogonal and nonorthogonal cascade PR systems
were obtained. In particular, structures for orthogonal and
nonorthogonal LOT with greater overlap are also
proposed. However, satisfactory design for image coding
applications had not yet been obtained.  Complete
factorization of the orthogonal linear phase PR filter banks
has also been obtained by Soman et al [9]. More recently,
Queiroz et al [10] has made use of this factorization to
extend the LOT to length greater than 2M, where M is the
number of channels. It was observed by Aase and
Ramstad [11] that for image coding, the functions of the
analysis filters and synthesis filters are quite different.
The analysis filter bank should maximize the energy
compaction, while the synthesis filter bank should provide
blocking-free reconstruction. In addition, the synthesis
filters should be short to avoid excessive ringing and
should be smooth enough to reduce blocking effects.
Since the analysis and synthesis filters of an orthogonal
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system must be time-reverse of each other, it is very
difficult to achieve these objectives simultaneously. On
the other hand, nonorthogonal filter banks do not suffer
from this restriction and is. more appropriate for this
application. In this paper, we shall introduce a new
family of nonorthogonal filter banks, called the
generalized lapped transform (GLT), to serve these
purposes. It is based on the nonorthogonal version of the
LOT introduced in [8]. Like the LOT, the GLT has
relatively low complexity of implementation and is based
on the well-known discrete cosine transform (DCT).

2. THE LINEAR-PHASE PR CASCADE

It was found in [8] that linear phase PR filter banks can be
obtained with a lattice type cascade structure of the

polyphase matrix, E(z), as follows:
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where
A, are diagonal matrices,
I,,, and J,,,, are (M/2)x(M/2) identity and
antidiagonal matrices respectively,
U! are (M/2) x (M/2) invertiable matrices,

R is (M x M) persymmetric matrix, and
M is the number of channels and is even

It can be shown that the matnx |:IM” 4 :| can be
‘41 IM/2

absorbed into the block diagonal matrix diag{U., U, }

and can be ignored. Furthermore, if U, are unitary
(orthogonal), the filter bank will be unitary (orthogonal)
as well.
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3. THE GENERALIZED LAPPED TRANSFORM

An example of the orthogonal representation is the
Lapped Orthogonal Transform (LOT) which is of length
2M. The corresponding polyphase matrix is:
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Here,

C%,, Sk, denote the type k length-N discrete cosine and

sine transform,

P is a permutation matrix which permutes the k and
k+M/2 rows to 2k and 2k+1 (k = 0,.,M/2-1) rows
respectively,

P is a permutation matrix which permute the 2k and
2k+1 rows to k and k+M/2 (k = 0,.,M/2-1) rows
respectively.

We propose a class of nonorthogonal PR filter bank, the
GLT of length 2M:
)
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U =diag{U,,U,,} is a block diagonal invertiable
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matrix and,
R = P'diag{B,,...,B,}DC}J,, with D a diagonal
matrix

We parameterize U, by products of block diagonal (2x2)
invertiable matrices:
U,= V3iniVli €3}
where V;/ is obtained by replacing the (kk), (kk+l),
(k+1,k), (k+1,k+1) entries of the identity matrix by the

|

elementary invertiable matrix [; i
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Other product forms for U, can be used but the present

choice has the advantage that U, will be diagonal
dominance. Longer filter can be defined similar.
However, short filters are preferred in image coding
applications to avoid excessive ringing.  Parameters
xi,yi.d, are used to minimize the following objective
function:

E=aFf;+a,E, +aE, )
where
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E, is the inverse of the coding gain of the nonunitary
filter banks for an AR(1) process with correlation

coefficient p [12-13]. A, (n) and g,(n) are the impulse
response of the k-th analysis and synthesis filters,

respectively. E, is the sum of stopband energies of the
synthesis lowpass filter, g,(n), with an interval of +/ at
frequencies i/M, i = 1,..,M/2. This helps to reduce the

blocking effects. E, is used to avoid poor scaling of the

synthesis filters. Also the synthesis filters are forced to
have small values at the ends of the impulse response.

a,'s are constants to tradeoff between the three objectives.

The signal flowgraph for a 8-channels length-16 GLT
optimized with p=0.95 is shown in figure 1. Figure 2
shows the impulse responses of the first and second



analysis and synthesis filters of the GLT. Notice that the
synthesis filters are no longer the time reverse of the
corresponding analysis filters. Also the synthesis filters
are much smoother than the analysis filters and decay at
both ends to reduce visual artifacts during reconstruction
after signal quantization. Figure 3 and figure 4 show the
frequency responses of the analysis and synthesis filter
banks. Here, 7 is chosen as 0.002. We have made use of
the NCONF program in the IMSL library to perform the
constrained optimization. The resulting coding gain of
the filter bank is 9.58dB. Future investigations will be
concentrated on better filter design techniques and
parameterization of the nonorthogonal matrices to obtain
filter with larger number of channels and filter lengths.

CONCLUSION

A pew family of perfect reconstruction linear phase
nonorthogonal filter banks called the generalized lapped
transform (GLT) is presented. It offers more freedom for
tradeoffs between the competing objectives in coding
applications and has fast form of implementation based on
the discrete cosine transform.
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Figure 1. Signal Flow graph of the 8-channel length-16 generalized lapped transform (GLT)
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Fig. 2a. Impulse response of analysis filter, h,(n) Fig. 2b. Impulse response of analysis filter, h (n)
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Fig. 2c. Impulse response of synthesis filter, g,(n) Fig. 2d. Impulse response of synthesis filter, g, (n)
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Fig. 3. Frequency response of analysis filters

Figure 4. Frequency response of synthesis filters
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