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ABSTRACT

A new approach to linear estimation in time-varying
discrete multivariable systems is described. The signal
model is taken to be a time-varying vector difference
equation which can be expressed in ARMA polynomial
system form. An optimal linear filter and predictor is
derived in terms of time-dependent polynomial operators
and this can also be implemented as a recursive algorithm
using difference equations. The system model and filter
are particuarly relevant in self-tuning filtering
applications.

1. INTRODUCTION

The polynomial systems approach to linear estimation
and control problems has mainly been restricted to
consideration of time-invariant stationary systems (Kucera
{1]). This may often be adequate for fixed systems but is
not so appropriate in situations where adaptive techniques
are required which are by definition time variable. In such
cases a slowly time-varying model for the signal source or
plant is often needed. Since identification methods can
provide estimates of the polynomial system model,
expressions are needed to enable time-varying filters to be
computed in this polynomial form.

The Kalman filter [2] does of course provide a solution
to the time-varying non-stationary estimation problem but
its state-space structure is not really suitable for adaptive
estimation problems. Thus, the objective here is to solve
this estimation problem using a time-varying polynomial
system operator description for the signal and noise
sources. The notion of a continuously changing signal
spectrum (Priestley [3]) arises and an innovations signal
description is employed (Anderson and Moore [4]).

One of the first predictors for non-stationary processes
was derived by Whittle [5] but the solution was only
explicit in certain special cases. Priestley and co-workers
generalised and extended this approach but multi-channel
estimation problems and models including coloured
measurement noise were not considered. These
generalisations are obtained in the following. The results
should be valuable in feedback control problems and in
signal processing applications, or time-series prediction
problems.
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2. SIGNAL GENERATING PROCESS

Since both control and signal processing problems are
of interest the discrete system model shown in Fig. 1 can
represent either an industrial plant or a message generating
process. The system is assumed to be linear and possibly
time-varying. The noise sources can be non-stationary
where their second-order properties are known. The noise
signals &(1) € R4, w(t) € RI" and w(1) & R’ are mutually
independent and trend free, with zero means and
covariances defined as: cov(E(t)&(t N=04(t By,
cov[o(t),e(T )]=Q,(t B, cov[v(t)v(t)]= R(t),.

respectively.  Here 3, denotes the Kronecker delta

function and the assumption is made that R(1) = RT(1) o.
Let Q(t) = block diagonal {Q (1), (1)),

2.1 Operator form of signal model

The system is assumed to be in operation from time
t, — —o and for simplicity any known inputs (such as
control signals) are neglected, since these contribute to the
filter output in a straightforward manner. The results
obtained are to be related to the Kalman filtering problem
and thus the system is assumed to have an underlying state-
space description which is completely observable, and
controllable from the noise inputs. This system model y =
WE may be represented by the one-sided moving average
processes:

t oo
Y=(WE NEIA D Wy(t (T )= D Wy(tE(t-j)

T=—o =0
and 0))
t oo
n(E)=(Wo@ 0)A D W, (1,8 Yot )= X Wy (1 1o(t = j)
T=—e j=0
where @

de(t)_éwd(t,t—j)and an(t)éwn(t,t-j) for

J =0, 1,2,.. where {v(t)] denotes white measurement noise
and {n(t)} represents a coloured noise or output
disturbance. The time-varying signal {y(t)} might for
example represent a fading and wandering radio signal.
All signals are considered to be members of the spaces of
doubly infinite vector sequences {f{t): t = ... -1, 0, 1,...}
with a unity sampling interval.
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2.2 ARMA signal descriptions
To identify the form of the signal W, and measurement

noise W, models, consider the time-varying difference
equations which are assumed to represent these operators:

ALzl y(n) = Coz ! JE(n) c
ALz h)n(r) = Cyt;z!)o(1) (5)
where without loss of generality (A, C,) are of the form:

A(t,'z-l) -_-[r +A1(t)z'l +...+An(t)z'" (6)
Chtiz!) =Cygo (N+Cyythz! +..4Cy(t)z  (T)
C,,(t,‘z'l) =Cpp (t)“'cnl(t)Z'I +.+Cpp(t)" ®)

The measurement noise model or output disturbance
model (A,, C,) can be taken to be asymptotically stable.

The time-varying operators W, and W, can be expressed,
as for time-invariant systems, in the form:
Wytz!) =AL ) IC 127)
wzl) =A(z )y IC (7))

®)
(10)

3. OUTPUT FILTERING PROBLEM
The first filtering problem is concerned with output
estimation, that is the problem of finding the best estimate
of the signal y(¢) in the presence of the noise terms v(¢) and
n(t).
3.1 Minimum variance criterion
Let the output estimation error be defined as:
F(t)A y(t)=-¥(t) (11)

where § A y(tlt) is the estimate of y(z), given

observations [z(t)} over the semi-infinite interval,

te(—oo,t J]. The average variance is to be minimised and
is given, in terms of the trace function, as:
T
1 =T~
J= lim=— D E(575(1)]
T—oo 2T (=T

1 T
= tm — DTHEFI (1)) (1)

To=iler
The time-averaging operation is necessary since for time-
invariant plants and stationary noise the steady-state value
ofE{&')T(t)Sz'(t)} is a constant, and the sum of an
infinite number of terms would be infinity. However,
using the above expression in this case J reduces to the
~T ~
steady-state J=E{y (t)y(t)}.

Moreover, by minimizing J the function E{ 3 (¢)§(t)) is
minimized, for each ¢, even in the time-varying case.

usual criterion

3.2 Estimation error equation
The filtered estimate_y(t) is assumed to be generated
from a linear causal time-varying estimator of the form:
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¥(t) = Hft:z a(t) (13)
where H denotes a minimal realisation of the optimal
estimator. Since an infinite time (f, — -o=) problem is of
interest no initial condition term is required.

To obtain an expression for the estimation error y(t)
note from (3) to (5):
z=v+AICw+AICE (14)
but a realisation of {z(t)J can be obtained using the
innovations signal model:

z= AlDg 1s)
where the zero mean white noise signal {e(z)} has identity
covariance matrix. From (11) and (13) obtain:

~ -1

y=y-y=A Cdé—Hfz (16)
where statistically the signal fz(z)} can be represented in
either of the equivalent forms (14) or (15).

3.3 Solution of the output estimation problem
The signal and noise models were defined in Section 2
and the variance to be minimised was given as (12).
Proceeding with the solution, the average covariance of the
estimation error can be expressed, using (16) as:

1
J= lim —E(5,5)} an
T— 2T »yr
1 -1 -1
= lim —E(<H;A Ds;e,H;A Dse>
T2l 10 TITUST TIECH
~<H A g a7 IcE sy
~<ATCE H ATICE >y +<ATICE ATICE >y (18)
(where the independence of £ and w and v has been used to
simplify the expression). Note for later use that (17) may
also be written, using (14), in the form:
1 - -
= lim—E(<(I-H; JA™ CE(I-H; JATICit >y
To=2T r
+<HpHv>y +<H;A"Co,H A C>y ) (19)
Using (34) equation (18) may be written as:
1 T -1 * k] %
T—o0 2T t=-T
-] * k]
_1 * - _ L] . * _1
~H AT c 0,04 - a7 c 0, AT H, ~ (27 )
(20
where T(z;z'!) is defined so that the kernel of the above
summation includes no terms involving powers of z or z1.
Thus, in expanding the operators within the kernel the
contribution to the cost J is from terms in z% Completing
squares gives:
1 < - - . o
I= lim— D rriH a7 D, - a7 c 0,650 )
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x(H;A™' D, - A™c,0,c5077" ) +( a7 c,0,C547
-a~'c,0,6,07 D7 C,0,C,4™ ~ (7 ) @)
Diophantine equations
To minimise this cost-function two diophantine equations
must be introduced. The existence and uniqueness of the
solution to these equations is discussed in Section 3.5.
Assuming for the present the existence of a solution let
(G,(tzl), S,(tz1), and F,(;z7), denote the minimal

degree solution, with respect to F o(t;z“ ), of the equations:
AF,+G,D;z78 = C40,C42% (22)
~AF,+S,D;7 % =(ARA"+C,0,C, )28 (23)
whereg A deg Dy. From (22) obtain:
F2p; "+ 476, = a"'c,0,c,07

o
since deg F, = g the first term can be expanded as a

convergent sequence in terms of positive powers of z. The
squared term in the cost-function (21) can thus be written
as:
-1 -1 * -1 -1 -1
-F28p; 4
To show that the first term [.] on the right of (24) can be
expanded as a convergent series in terms of negative
powers of z, an implied diophantine equation must be
introduced. Appropriately multiplying (22) and (23):
F,0; ' +a7'G,278 = a7lc,0,C,D5 178 (29)
~F, D5 +a7's,78 =(R+A7C,0,C,4™ )A' D8
Adding (25) and (26) gives: (26)
G,+S,=Dy @27
The first term in (24) may now be expressed, using (27),
as:
[HAIDs -A"lGy] = [(Hy -DA'G,+HAIS,] (28)
For the cost-function (20) to be finite (1~Hf)A" and
HfA" C, must represent asymptotically stable causal
system matrices (using (23) this can also be shown to
apply to HA''S,). Thus, (24) separates into an
asymptotically stable causal term [.] and a strictly non-
causal term F,z8 D}_I

Minimization step
The cost-function (21) may now be expanded as:

T
i - -
J= lim— Y\ Tr(H,A7D; - 476, ]

T =00 2T t=—T

x(H A Dy -a7'G, T

*] =] . * -1 * *x_]
+(F,D;'D;'F, + 4~ C,0,C14

-] * -1 -1 * -1
-a~'c,0,¢,07' D7 c 0,654 )
~([H;A™'D; - A7'G, |D;'Fy 28 + F,28 D}
X(H;A"D -A"'G, " +T(z;z™ )] (29)

Inspection of the cross terms in the kernel of the above
summation reveals that the term

[Hy A"IDf —A']Ga ]D;']Foz-g involves only negative
powers of z (deg F < g) and
F,2D; [H;~A7'D, A7'G, " involves only positive
powers of z. Thus, the contribution to the kernel, at time ¢,
of the final terms in (29) is zero, since the coefficient of z°
is null. The second group of terms in (29) (within the
square brackets) are independent of the filter operator H;
and do not enter the minimisation procedure. The
minimum variance is therefore achieved by setting the
coefficients of z? in the first term of (29) to zero, or
equivalently by setting the term [HA/D;-A-/G ] to zero.
The optimal filter is obtained in its minimal form
using:

-1 -1
or from equation (27) noting A-/G, = A/ (D -S,):
Hy=1,-A"'s,Df A (31)

Collecting the above results the following theorem is
obtained:

Theorem 3.1 : Optimal linear filter
The optimal time-varying causal linear filter for the
signal model described in Section 2, to minimise the
average covariance of the estimation error (17), is given
as:
-1 -1
Hf =A"G,Df'A 32)
or alternatively as:
Hy=1,-A"'s,Df'a (33)
The polynomial operators G, or S, are obtained from the
minimal degree solutions (G, F,) or (S,, F,), with respect
to F, of the diophantine equations (22) or (23),
respectively. The operator D}l is asymptotically stable
and is defined from the time-dependent spectrum:
DD, =Cy0,Cy +ARA +C,0,C, 34)

3.4 White measurement noise : Kalman filtering problem

The special case of the time-varying Kalman filtering
problem where the measurement noise is white (c, =0),
will now be considered. These results should be compared
with those of for the time-invariant situation.
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Lemma 3.1 : Kalman filtering problem
The Kalman filter is obtained as: .
H;=1,-3,D;'A (35)
where S, = AS o follows from (22) and (23), and Df from
(34).
Proof: If C, = O then from (23) S, must be of the form
Ago, and (35) follows from (33). Note that in this case
(23) may be replaced by the reduced equation:
~F,+5,D7'< ¢ =RrA"77 (36)
Example 1 : Time-Varying System Filtering Problem
Consider the system model defined in state equation
form: )
x(t+1) = a(t)x() + &(1) 37
y(t) = x(1)
(1) = y(1) + v(1)
The independent zero mean noise sources have variances
E{E¥t)} = Q; =1 and E{v¥(1)] = R = 1. The output
disturbance is absent in this problem (Q, = 0).
Solution

This example is used to relate the present results to the
familiar Kalman filtering problem.  The system model
may be represented by the polynomial operator:

Wtz )= a7 )y ey

-1
= (t)
(1-a(t-1)z"" =%

)
Computation of Dz The spectral factor satisfies equation
(34):
Dy Dy =C,0,Cy+ARA™ (38)
where Df(t;z'] ) = d,(t) + dyt-1)zl. A method of
computing d,(t) and d(t) is described below but note that
in self-tuning filtering problems Dy will be identified

directly and this calculation can be avoided.
General diophantine equations: In a general filtering
problem either G, can be found from (22), or S, from
(23). For the sake of illustration both of these calculations
are considered below. Since deg(F,) < g - 1, then F,

.G, =g, (t)and S, =5, () + s,(t)z'l; thus

(1-a(t-1)z 0 )f,(1) +g (d (1) +d ) ()2)z =z (39)
and
-(1-a(t-1)z ! ) ()+(s () +s 1)z )
x(d (1) +d,(t)2)z"!
= (1-a(t-1)z7)(1-za(t-1))"! (40)

Multiplying out these equations and equating coefficients

fo(t) + go(t)dl(t) = 0
-a(t-1)f(t-1)+g,(t)d (1) = ]

and
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£(1) + s,(t)d,(1) = -a(t)
a(t-1)f (t-1)+s,(t)d (t)+s,(t)d (1-1)
=1 +a¥(t-1)
sy(0)d,(t-1) = -a(t-1)
These equations can be solved recursively for (f (1),
8o(1) or (f, (1), 5, (1), 51 (1)) given fy(1-1).
Kalman filtering diophantine equations

For this particular problem (with C, = 0) the second
diophantine equation (23) can be simplifed as described in
Lemma 3.1. From (36) noting deg(F,) < g - I gives:

Solt) + st ()+d)(1)2)z! = (1-a(ng)r!  (41)
Muitiplying out and equating coefficients obtain:

Solt)+5,(1)d)(t)=-a(t) 42)

sy(tdy(t) =1 43)

giving s,(t) = d,()! and f(t) = d (t)'d,(t)+a(t). The
filter now follows from (35).
H(uz!l) = 1-d (D2 yl(1-a(r-1)z7) (44)
5. Conclusions

The general approach at representing time-varying non-
stationary systems in polynomial operator form and the
subsequent optimal solution procedure is original, and can
be applied to a range of linear estimation and controi
problems. The signal model is also in a very appropriate
form for signal processing applications.

When the signal model is unknown and must be
identified on-line, a self-tuning approach may be taken
based upon the proposed estimator. The time-varying
spectral factor D{t;z’!) can then be identified from the

signal measurements and a single diophantine equation can
be solved to obtain the filter transfer operator. By this
means simple adaptive estimators may be constructed.
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