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ABSTRACT

This paper investigates the design of M-band lin-
ear phase wavelet filter banks (M > 2), and explores
their application to image coding. The generalized
LOT description of M-band linear-phase paraunitary
filter banks is used to parametrize the M-band linear-
phase orthogonal wavelets. It is proven that an M-
band linear-phase orthogonal wavelet of even length
cannot have more than one vanishing moment. Since
this limits the effectiveness of the resulting wavelet fil-
ters, we next suggest methods for the construction of
linear-phase biorthogonal M-band wavelet lowpass fil-
ters, generalizing prior 2-band constructions. However,
one cannot guarantee that an arbitrary lowpass filter
pair can be completed to a full perfect-reconstruction
filter bank. Finally, the new linear-phase orthogonal
wavelet filter banks are compared with known wavelet
filters with regard to their performance in a transform-
based image coder.

1. INTRODUCTION

Discrete wavelets have recently drawn attention as
a multiresolution transform; they are especially well-
suited to image coding because they match percep-
tual properties of the human visual system. How-
ever, 2-band wavelets cannot be simultaneously orthog-
onal and symmetric (linear-phase). Linear-phase filter
banks are desirable for subband coders because they
enable symmetric extension at image boundaries and
they preserve centers of mass in an iterated decomposi-
tion such as the wavelet transform. In the 2-band case,
this obstacle has been overcome [8, 1, 14] by designing
biorthogonal (perfect-reconstruction, not paraunitary)
filters. However, when M > 2, linear-phase and or-
thogonality can be simultaneously satisfied. Such Or-
thogonal linear-phase filter banks have recently been
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parametrized [12, 10], at least when M is even. We
use these parametrizations to determine the M-band
orthogonal linear-phase wavelets.

Regularity, often measured by the number of vanish-
ing moments, is a key property of a wavelet filter bank;
it determines the smoothness of the iterated lowpass fil-
ter. We prove that an M-band orthogonal linear-phase
filter bank with even-length lowpass filters cannot have
two or more vanishing moments, and thus the associ-
ated scaling functions cannot even have a continuous
derivative. Given this mathematical obstruction, one
must turn to odd-length filters or biorthogonal systems
to obtain M-band symmetric wavelets with arbitrary
regularity. We generalize the 2-band biorthogonal con-
structions of Daubechies and Vetterli-Herley to the M-
band case, devising linear-phase lowpass wavelet filters
with an arbitrary number of vanishing moments. Thus
we are able to create M-band symmetric scaling func-
tions with any desired smoothness. However, there is
no guarantee that an arbitrary lowpass filter pair can
be completed to a perfect-reconstruction filter bank.

We employ the new M-band orthogonal wavelet fil-
ter banks in an image compression system. The wave-
lets are used to decompose the image into a set of sub-
bands. Entropy-constrained scalar quantization is then
performed on each subband, using operational rate-
distortion methods [11] to determine the optimal bit
allocation. Finally, we compare the performance of the
new filter banks with Daubechies’ wavelets.

2. LINEAR-PHASE ORTHONORMAL
M-BAND WAVELETS

M-band orthonormal filter banks in which each fil-
ter has linear-phase symmetry have recently been
parametrized (12, 10]. The parametrization of [10]
establishes such filter banks as generalizations of the
lapped orthogonal transform (LOT) (7], and uses the
name GenLOT. Let us summarize this parametrization
briefly. An M-band filter bank can be described in the
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z-transform domain by its polyphase matrix E(z):

HQ(Z) 1
Hl(z) _ E(z) 2=1
Hy1(2) 2~(M-1)

When the number of channels in the filter bank M is
even, and the filters hg[n] (with z-transforms H(z))
have length M N, the polyphase matrix has the form

E(z) = KN_l(Z)KN_z(Z) .. K1(Z)E0 (1)

where each

xG@=3 9 w1 Z][o a1 &

I is the rank M/2 identity matrix, while U; and V;
are arbitrary rank M/2 orthogonal matrices. Ep is a
rank M unitary matrix with M/2 symmetric and M/2
antisymmetric rows (such as the DCT-IV); it can be
factored as

E - 1 [Dy O I I I o}
°=/AL 0 DI -I||lo0o J]|"
J is the familiar reverse identity matrix (of rank M/2),
while Dy and D; are arbitrary orthogonal matrices of
rank M/2.

We examine the use of the GenLOT in the construc-
tion of M-band linear-phase orthonormal wavelets, and
obtain two interesting results. First, all possible Gen-
LOTs with one vanishing moment may be described
in terms of certain rotation matrices. An orthogonal

wavelet filter bank has one vanishing moment [13, 15]
if it satisfies

HQ(Z) \/M—
H1(Z) _ 0 (2)
Ha_1(2) 0

for z = 1. This means that constant signals are “pure

lowpass,” yielding zero outputs from the bandpass and
highpass filters. This condition is equivalent to the
existence of a corresponding tight frame for L2(R) [13].
We find that a GenLOT with N — 1 factors K;(2) will
have one vanishing moment if and only if the rotation
matrices U; satisfy

1 M/2

1 0
UN_lUN_g...UlDo . = .

1 0

Clearly, the number of free parameters available for
filter design (to optimize such properties as stopband

attenuation or coding gain) increases with both the
number of channels M and the filter length, which is
determined by the number of factors N. With even
the simplest N = 1 LOTs, it is possible to create a
filter bank based on the DCT-IV having one vanishing
moment for use in a wavelet decomposition. A 4-band
GenLOT with N = 2 (filter length 12) and one vanish-
ing moment is shown in Figure 1.
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Figure 1: Magnitude responses (in dB) of a 4-channel
GenLOT with one vanishing moment. Each filter has
12 taps.

5

It is of interest to create wavelet filters with more
than one vanishing moment; indeed, the interpola-
tion/approximation properties of such filters lead to
their superiority for wavelet-based image coding sys-
tems [5]. Daubechies discovered orthonormal wavelets
with N vanishing moments in the 2-channel case [2];
her construction was generalized to the M-channel case
in {13, 15) . An M-channel orthogonal filter bank will
have two vanishing moments if it satisfies (2) as well as
the second-order condition

Ho(z) 0
d | Hiz) 0
o |7 ©)
- HM_.I(Z) 0
at z = 1. However, we have the following negative
result:

Theorem 2.1 An M-channel linear-phase orthogonal
filter bank with lowpass filters of even length L cannot
have more than one vanishing moment, independent of
M and L.

Proof: The one-vanishing-moment condition (2) im-

lies
P L/2-1

L-1
Y oho[n]=VM & ) holn]=VM/2, (4)

for an even-length symmetric filter. On the other hand,
combining the second-vanishing-moment condition (3)
with the half-sample symmetry of the filter implies
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L-1 L/2-1
znho[n]zo & E ho[n] =0. (5)

The two equations (4) and (5) cannot simultaneously
be true; this obstruction cannot be resolved by increas-
ing the order of the filters involved.

As a corollary of this result, the scaling functions as-
sociated with an even-length symmetric filter pair may
be continuous, but they cannot have even one contin-
uous derivative [2]. Theorem 2.1 is supported by sev-
eral facts. The only linear-phase 2-channel orthogonal
wavelet filter bank is the Haar system, which has one
vanishing moment. Second, the authors do not know
of a published example of an M-channel linear-phase
orthogonal filter bank with two or more vanishing mo-
ments. It may be possible to create linear-phase M-
channel orthogonal wavelets of odd length with more
than one vanishing moment.

3. LINEAR-PHASE BIORTHOGONAL
M-BAND WAVELETS

Given the result of the previous section, and the de-
sirability of more than one vanishing moment in a
wavelet filter bank, we now examine the possibil-
ity of constructing linear-phase M-band wavelet filter
banks with N vanishing moments that are biorthogonal
rather than orthogonal. This corresponds to perfect-
reconstruction rather than paraunitarity filter banks.
In the 2-band case [1, 14], this approach was success-
ful. The idea is to factor the modulus squared |Aq(z)f
of an orthogonal lowpass wavelet filter with N vanish-
ing moments to yield two symmetric filters Ho and Fq
of different lengths such that

Ho(z)Fo(z) =| Aq(2)]* .

Each of Hy and Fy will have some integer number of
vanishing moments.

In the M-band case, closed-form solutions for or-
thogonal wavelet filters with N vanishing moments
(but not linear phase symmetry!) have been obtained
[13]. Thus we have |A(2)|? at our disposal and can
split it into linear-phase factors. Care is required to
obtain filters with well-behaved frequency responses,
as well as smooth scaling functions for the underlying
basis of L2(R). One such example for M = 4 with an
analysis filter having 2 vanishing moments and a syn-
thesis filter having 4 vanishing moments is shown in
Figure 2. This example was obtained by redistributing
the roots of the modulus squared of the 4-band lowpass
filter with 3 vanishing moments and an additional zero
at 3w /4 described in [4].

Given a pair of lowpass M-band wavelet filters,
one would like to obtain bandpass and highpass

filters which yield a linear-phase M-band perfect-
reconstruction filter bank. This does not appear to be
possible for the {11,19)-tap pair described above, and
points out the importance of deriving lattice-structure-
based parametrizations of M-band linear-phase filter
banks, such as those in [8, 9]. By working with such
a factorization, one would hope to simultaneously ob-
tain a linear-phase perfect-reconstruction filter bank,
and wavelets with more than one vanishing moment.

11-tap, 2 v.m. analysis wavelet 19-tap, 2 v.m. synthesis wavelet
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Figure 2: Magnitude responses and scaling functions
for a 4-channel biorthogonal wavelet lowpass filter pair.

4. APPLICATION TO IMAGE CODING

Finally, having constructed a new family of M-channel
linear-phase wavelet filter banks, we evaluate their ef-
fectiveness for image coding on a variety of images. The
linear-phase wavelet filter banks serve as the transform
element in a transform coding system. The filter banks
are used to decompose the image into a set of critically
sampled subbands; the wavelet decomposition should
provide superior energy compaction in this subband de-
composition. We then apply entropy-constrained uni-
form scalar quantization and entropy coding to the sub-
band data. Wavelet subband data is well-modeled by
Laplacian distributions [6]. We use this model to de-
termine an optimal bit allocation among the subbands,
using the operational rate-distortion methodology of
[11]. We employ a combination of Huffman and zero-
run-length encoding to approach the true entropy of
the quantized bitstream.

We applied this coding system to the Lenna im-
age (NITF6), an 8-bit fingerprint image, and a 2-
dimensional seismic dataset. Our compression results
(based on the size of the entropy-coded bitstream) are
shown in Tables 1, 2, and 3. For the seismic dataset, we
compared a 2-channel, 5-level Mallat tree based on the
Daubechies (7,9)-tap biorthogonal filter pair [1] with a

1498



4-channel, 3-level Mallat tree [6] based on the 12-tap
GenLOT shown in Figure 1. The 4-channel wavelet
offered superior or comparable performance across all
compression ratios. We employed the same wavelet
transforms on the Lenna image, and found that at a
compression ratio of 8:1, the 4-channel wavelet system
had a lower maximum error than the 2-channel wavelet,
and was within 0.5 dB in pSNR. For the fingerprint im-
age, we compared two discrete wavelet transforms. One
of them was the transform of the FBI’s Wavelet Scalar
Quantization standard [3], which uses the (7,9)-tap fil-
ter in a specific non-Mallat tree. We compared this
transform with a mixed 4-band and 2-band tree which
achieves an identical subband decomposition of the im-
age by cascading 2 levels of the 4-band GenLOT and
then applying a 2-band filter to the lowest-frequency
subblock. In this case, the 4-channel filters yielded su-
perior maximum error and slightly lower pSNR’s than
the 2-channel (7,9)-tap transform, at compressions of
16:1 and 32:1. The effectiveness of the 4-channel Gen-
LOT is remarkable, considering that it has only one
vanishing moment, whereas the (7,9)-tap filter pair has
four vanishing moments! It is hoped that further work
on filter design (such as biorthogonal pairs with more
vanishing moments) will yield superior transform coder
performance.

8:1 16:1 32:1
pSNR | Max | pSNR | Max | pSNR | Max
M=2] 51.6 | 1101 | 40.7 | 4262 | 32.7 | 12544
M=4] 52.6 | 1025 | 41.3 | 4298 | 33.7 | 12260

Table 1: Peak SNR and maximum errors for compres-
sion of 2-d seismic data example (Mallat tree, M = 2
(7,9)-tap pair and M = 4 GenLOT).

8:1 16:1 32:1
pSNR | Max | pSNR | Max | pSNR | Max
M=2| 378 27 34.8 40 31.7 59
M=4| 374 25 33.8 46 30.3 64

Table 2: Peak SNR and maximum errors for compres-
sion of Lenna (Mallat tree, M = 2 (7,9)-tap pair and
M =4 GenLOT).

8:1 16:1 32:1

pSNR | Max | pSNR | Max | pSNR | Max

M=2]| 365 18 31.8 34 28.2 87

M=4} 356 22 31.0 33 27.7 74

Table 3: Peak SNR and maximum errors for compres-
sion of fingerprint image (WSQ tree, M = 2 (7,9)-tap
pair and M = 4 GenLOT).
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