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ABSTRACT

We show how the Padé table can be utilized to develop a
new lattice structure for general two-channel bi-orthogonal
perfect reconstruction (PR) filter banks. This is achieved
through characterization of all two-channel bi-orthogonal
PR filter banks. The parameter space found using this
method is unique for each filter bank. Similarly to any
other lattice structure, the PR property is achieved struc-
turally and quantization of the parameters of the lattice
does not effect this property. Furthermore, we demonstrate
that for a given filter, the set of all complementary filters
can be uniquely specified by two parameters, namely the
end-to-end delay of the system and a scalar quantity.

1. INTRODUCTION

Factorization of filter banks has proved to be essential in
both design and implementation of PR filter banks. Also,
they help in understanding the fundamental algebraic struc-
ture of PR filter banks. Using factorization, a higher order
filter bank is achieved by adding an extra element to a lower
order bank. Such a lattice type structure was considered
to characterize all M-channel paraunitary filter banks [1].
Partial results on factorization of general PR filter banks
have been recently reported where, although the proposed
factorization characterizes a large class of PR filter banks, it
lacks completeness [2]. Such structures have also been pro-
posed for the bi-orthogonal linear-phase filters [3]. With the
use of ladder structures, it can be shown that the factoriza-
tion of general M-channel bi-orthogonal PR filter banks is
possible. This factorization even though is complete lacks
uniqueness [4].

In [5] Vetterli and Herley demonstrated the close re-
lation between the continued fraction expansion (CFE) of
functions and PR filter banks. They showed that in the case
of two-band PR filter banks with filters H(z) and I?(z),

the CFE of the ratios of H(z)/H(—z)and H(z)/H(~z) are
similar except for the last term. This is expected in light
of the fact that the comprimeness of H(z) and H(—z) is
a necessary condition for PR, which also points to the re-
lation between the CFE and the Euclid algorithm as was
demonstrated in {5]. The Padé table is a classical method
for approximating a power series by a ratio of two polyno-
mials [6]. The members of the table approximate a given
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power series as closely as possible and are distinguished by
the respective orders of their numerators and denominators.
Clearly, the higher the order of these polynomials, the closer
is the approximation to the given power series. Also, any
path ! through the Padé table of a function corresponds to
a CFE of that function. However, the converse is not true
and not every CFE of a function corresponds to a path of
its Padé table [6].

In Section 2, we first give a brief summary of the Padé
approximation and the CFE and elaborate on their proper-
ties which are directly used in this paper. We then develop a
new lattice structure for general two-channel bi-orthogonal
PR filter banks in Section 3. This is done through use of
the properties of the Padé table and the CFE and charac-
terization of all two-channel bi-orthogonal PR filter banks.
The PR property is achieved structurally and quantization
of the lattice parameter does not effect this property. In
Section 4, we develop a two-parameter characterization of
all the possible complementary filters of a given filter where
one parameter is related to the end-to-end delay of the sys-
tem and the other is a scalar quantity.

2. PADE TABLE AND CONTINUED
FRACTION EXPANSION

The [m, n] (mth row, nth column) element of the Padé table
of function f(z) is the ratio of two relatively prime poly-
nomials in z, namely Pm n(z)/Qmn(z) where the highest
degree of Pm n(z) and Qmn(z) are at most m and », re-
spectively [6]. If these degrees are exactly equal to m and
n for all the elements of the table, then the function f(z)is
called regular. The elements of the Padé table are defined
such that,

_ Pryn(2)
Qm.n(z)

where O(z') denotes a power series with elements of degree
! and higher. Utilizing the above, one can show that

f(z) = O(z™"H (1)

a22n-1

T Qnn(2) Qo (3)

which is the expression for the difference between successive
approximations of f(z) along the diagonal elements of the

[n,n]—[n—1,n—1] (2)

1By path we mean to start from upper left corner of the table,
and at each step, to move to the right or the down or along the
diagonal direction.
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table. Throughout, we take advantage of the following two
invariance properties of the Padé table:

o If P(2)/Q(2) is the [m,n] element of the Pade table
for f(z), then Q(z)/P(z) is the [n, m] element of the
Padé table for 1/f(z).

o If P(z)/Q(z) is the [n,n] element of the Padé table
for f(z), then P(—z)/Q(—z) is the [n,n] element of
the Padé table for f(—z).

The nth approximant of the continued fraction

a1(z) . a2(z) a1(z)

A
=bo(2)+ —m———————
e s o) ba(2) + 52

bo(z)+

» (3)

is defined as

An(z) mi) _w() )
Ba(z) bi(2)+ ba(2) + -+ ba(2)’
where it can be shown that both the numerators (Ana(z))

and the denominators (Bn(z)) satisfy the same three-term
recurrence equation [7)

bn(2)An—1(2) + an(2)An—2(2)

=bo(z) +

An(z) =
5)
Bn(z) = bn{2)Ba-1(2)+ an(2)Bn-2(2)
but with different initial conditions

AO(Z =b0(z A_1 z)=1
{ BO(Z;=1 ) B-},%Z%:O ) (6)

The CFE corresponding to the path passing through
the diagonal elements of the Padé table is known as P-
fraction expansion where an(z) = 1 for all » and bn(z2)
are polynomials of z~* [8] >. In the case of regular f(2),
it is straightforward to show that b.(z) is at most a first
order polynomial. For example, the P-fraction expansion
ofe*=3 1o, z* [k is given by

1 1 1
z-1 — %+ 12z=14 521 + ...

z

e = 1+

2
z z 22

= 1 —_—
+ 1—3z+ 1245+

3. LATTICE STRUCTURE

We first prove the following theorem

Theorem 1 If f(z)f(—z) =1, then the numerators of the
consecutive diagonal elements of the Padé table of f(z) are
a PR pair.

Proof: Since f(z)™} = f(—z), then from the invariance
properties of the Padé table, one can show that

P(z) _ Q(=2)
QG " P(=)

where [n,n] = P(z)/Q(z) is the nth diagonal of the Padé
table of f(z). Now since P(z) and Q(z) are relatively prime,

2Note that f(z) is a power series in 2. In this paper, we denote
the delay element by z instead of z71.

S —F}
| S
" e e
H,(2) H (@
] z2 ]
L

Figure 1: Modular implementation of successive approxi-
mants

we have Q(z) = P(—z). As a result, [n,n} is of the form
Ha(z)/Hn(—2) and applying (2), we arrive at

Ha(z) Hp 1 (2) _ oz !
Hp(-2) Hna(-2) Hp(—2)Hn-1(-2)’

or
Ho(2)Hno1(—2) — Ha(—2)Hn-1(2) = az?!
which means that {Hn(z), Hn-1(z)} is a PR pair.0

Since the diagonal elements of the Padé table can be also
found through P-fraction expansion of f(z), the numerators
of the diagonal elements of the table satisfy the three-term
recurrence given by equation (5). Moreover, if f(z)f(—z) =
1, one can show that bn(2) = bzt for n > 2 and

Hi(z) = (b1 — }z)Ho(z)+zH-1(2)
(7

Hn(z) = baHao1(z)+ 22Haa(2) n>1,
where b, € C, Ho(z) = H-1(z) = 1 and as before Ha(z)
is the numerator of the nth diagonal element of the Padé
table. In summary, as shown in Figure 1, the nth order
filter Hn(z) is found by shifting Hn-2(2z) by 2 and then
adding an appropriate multiple of H,_1(z). Note that from
Theorem (1), the pair {Hn-1(z), Hn(2)} is a PR filter bank
for all n. Also, the circuit shown in Figure (1) is structurally
PR and this property is not effected by the choice or the
quantization of bn.

Table (1) shows Daubechies D4 filter and its first two
approximants where the coefficients are normalized so that
the leading coefficient is one. Note that from the above
theorem the pairs {H7(z), He(z)} and {He(z), Hs(2)} are
both PR pair. Table (2) shows the value of b (1 < i< 7)
which results in Daubechies D4 filter.

Remark 1: Note that, for a given Hn(z), the ordered se-
quence {b1,---,bn} found through this procedure is unique
and it is not possible to find another sequence {b1,---, 0%}
to arrive at the same Hn(z).

Remark 2: It is straightforward to verify the following
lemma.

Lemma 1 If H(z) and ﬁ(z) are of order n and n — 1 re-
spectively and are a PR pair, then any other filter of ol'der
n—1 which forms a PR pair with H(z) is of the form S§H(z)
for some § € C.
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In other words, the filter of order » — 1 which forms a PR
pair with H,(z) is unique up to a scaling factor. Therefore,
it is sufficient to use any method such as Euclid Algorithm
instead of Padé table to find Hn_1(z).

Remark 3: It can be shown that if limb, — oo then
limn oo Hn(z) exists for all z € C. This fact can be utilized
to find a sequence of filters { Hn{z)} such that they approach
a specific frequency response and any two consecutive filters
constitute a PR filter bank.

4. COMPLEMENTARY FILTER

From Remark 3 of the last section, we can see that the fre-
quency response of Hn(z) and Hn—1(z) can be close to each
other. In practice, however, one wants the complementary
filter to have high-pass response to capture those frequency
components that are not significantly present in the low-
pass filter. The following theorem shows that all the order
n complementary filters H. n(z) can be found using a combi-
nation of Hn—1(z) and Hy(z). Moreover, if we restrict I?(z)
to be causal, only two parameters (up to a scaling factor)

are sufficient to characterize H{z).

Theorem 2 Let Hn(z) and Hn_1(z) of order n andn —1,
respectively, be a PR pair. Then any H(z), of order n, such
that Hn(z) and H(z) are a PR pair with

Ho(2)H(=z2) — H(2)Hn(—2) = az?k+1),
where k € {0,1,---,n — 1}, has the following form:

n—k—1

H(z) =627V H,_i(2) + ( Z ﬂj+1z_2j) Hx(z)
=0

(8)
for some By,---,Bn-k,6 € C. Moreover, if k,6 and 8, are
specified, only one choice of 82, -, Bn—r yields a causal

filter for I}(z)
Proof: The proof is given in the Appendix. O

Notig that for a given value of k, the frequency selectivity
of H(z) depends only on the ratio §/8; and not their abso-
lute values. Therefore, f%‘ a given k, the process of finding
a complementary filter H(z) with a desired frequency re-
sponse is a one-dimensional search through different values
of §/81. Also note that k is related to the end-to-end de-
lay of the system which is equal to 2k 4+ 1 and hence small
value of k corresponds to low-delay PR filter bank. From
Theorem (2) we conclude that any causal complementary
filter of order n of Hy(z) is uniquely characterized (up to a
scaling factor) by the two parameter set {k,5/8:} or there
are only two degrees of freedom in choosing this filter.
Figure (2) shows the frequency response of H(z) where
k=17 and §/8, is varied from —95 to —85. The low-pass
filter prototype used in this figure is the Daubechies D4
(H7(z) in Table (1)). Note that around 6/, = —90, FI(:)
has the desired high-pass frequency response. Indeed, one
can show that {k = 7,§/8, = —90.5} corresponds to power

complementary filter of H(z), namely I?(z) =2 Hy(—z7").

Figure 2: Frequency response of I?(z) for {k =7,-95 <
§/61 < -85}

4.1. Causal Implementation

Although equation (8) suggests a non-causal implementa-
tion for H {z), a causal implementation is always feasible.
By Lemma (2) (proved in the appendix), we have that
Hyp(z) can be written in terms of Hn—k, -+, Hooor. It is
then straightforward to show that H (2) can always be writ-
ten as a linear scalar combination of

{Hn(2), Hak(2), -, Ha2k(2)} .

2k
H(z) = B1Ha(2) + ) _ a;Has(2),

=k

where aj € C for all 5. In other words, the complementary
filter can be achieved by tapping the output of the adders
of the lattice structure given in Figure (1) and adding a
proper linear combination of these outputs.

In summary, a two-band bi-orthogonal filter bank where
both filters are of order n can be uniquely characterized by
the following n + 2 parameter set

{b17b2»"'1b'n76/,31 EC,kE{O,"',n—l}}.

5. CONCLUSIONS

We have investigated relationships among Padé table, con-
tinued fraction expansion and two-channel perfect recon-
struction filter banks. Through characterization of all two-
channel bi-orthogonal PR filter banks, we developed a new
lattice structure for this class of filter banks. The parameter
space found using this method is unique for each filter bank.
Similarly to any other lattice structure, the PR property is
achieved structurally and quantization of the parameters of
the lattice does not effect this property. We showed that
for a given filter, the set of all complementary filters can be
uniquely specified by two parameters, namely the end-to-
end delay of the system and a scalar quantity.
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6. APPENDIX

In this Appendix, the outline of the proof of Theorem (2)
is given. Let us define

Gi(z) = H(z) = f1Ha(2)

where f1 is chosen such that g;(n) = 0. By direct substi-
tution,

Ha(2)G1(—2) — Gi(2)Hn(—2) = az?**?
so that G1(z) and Hy(2) form a PR pair. Nowif k =n—1,
gi(n — 1) cannot be zero, so that by Lemma (1), G1(z) =
§Hpn_1(z) for some 6§ € C, H(z) = §Hn_1(z) + B1Hn(z)

satisfying (8) and we are done.
If ¥ < n—1, then we define

Gi(z) = 2°Gi_1(z) — BiHn(2),
where §; is chosen such that gi(n) = 0. Now,
Ha(2)Gi(—2) — Gi(2)Hn(—2) = az?*+9-1
which implies that g;(n—1) =0 fori < n—k and gi(n—1) #
0 for ¢ = n — k. This also implies that G;(z) is always at
most of order n — 1. By Lemma (1), Gn-x(z) = § Hn—1{(2),
and repeated substitution of (9) leads to (8).

We now show that if H(z) is causal then %,8 and 5
are the only degrees of freedom. We first show that the
following lemma is true.

i=23,---,n—k (9)

Lemma 2 For a given sequence of polynomials {Hn(z)}
satisfying (7), it i3 possible to write Ha(z) as

2k

Z a; 220 H,_ (),

1=k

for all k > 1, where a; € C, Ho(z) = H-1(z) = 1 and
Hi(z)=0 fori< -2.

Proof: k = 1 corresponds to (7). Now, assuming that
the above lemma is true for arbitrary k, by mathematical
induction it is straightforward to show that it also holds for
k+1.

Equipped with Lemma (2), we can now complete the proof
of the theorem. By regrouping different terms of (8), we
have

H(z)

(6Hn—1(z) + Bnok Hn(2))z 2" "*=D

n—k-—2 )
( Z ﬂj+1Z'2’> Ha(z),
=0

and using Lemma (2), it is possible to choose B.—k such
that

-+

(10)

—2(n—k=2)

I?(z) = mnHn 2(2)z

n—k-2
+ ( Z ﬂj+1z_2’> Hn(z). (11)
j=0

By iteratively applying the same procedure, the RHS will
only contain positive power of z. It is clear that for this
and only this specific choice of Bn—k, Bn—r-1," -, B2, FI(Z)
is causal. This completes the proof of Theorem (2).
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H:(z)

He(z)

Hs(z)

1.0000000000

1.0006000000

1.0000000000

3.1029314858

3.1029314858

3.1029314858

2.7384614815

2.8819998520

3.1734177538

-0.1214690295

0.3239206941

1.2281704828

-0.8118612163

-0.3563540087

0.4564133099

0.1338739557

0.3101626433

0.3204724809

~HO| U | W= O

0.1427351497

0.2082479716

-0.0400009711

Table 1: The coefficients of D4 filter and its first two ap-
proximants

by | 0.1611379440
by | 2.2342472102
b3 | 1.6658767160
by | -2.3332622209
bs | -1.1149202725
bs | 3.0777960077
b7 | -2.2635601304

Table 2: The value of b; {1 <1< 7) for D4 filter




