MULTI-DIMENSIONAL, PARAUN_TARY PRINCIPAL COMPONENT FILTER
3ANKS

Bo Xuan =z Ioberto H. Bamberger

School of Electrica z=rneering and Computer Science
Wask=rcn State University
Pullma= ¥\ 99164-2752, USA

email: bxz=- camberg@eecs.wsu.edu

ABSTRACT

This paper presents a generalization of the one-dim=s—=al
principal component filter bank (PCFB) derived = = :0
higher dimensions. Previously, the results in [4] we= =-
tended to two-dimensional signals in [5], but the w—== 5]
was limited to 2D signals and separable resamplicy —=ra-
tors. The filter bank discussed here results in m——mxmg
the mean squared error when only @ out of P st===ds
are retained. Furthermore, it is shown that the fix= =2k
maximizes theoretical coding gain (TCG). Simulaz—= e
presented demonstrating the potential of the PCF=

1. INTRODUCTION

Multirate filter banks are a popular tool in a variewr = sg-
nal and image processing systems. The design of = Zser
banks design has been thoroughly addressed by the ===ch
community[6, 7]. Recently, the design of 2D and k= -
mensional filter banks has received a great deal of zze=——n.
The majority of these design techniques focus on czz ~ze-
pendent figures of merit such as aliasing cancellati= —3g-
nitude distortion, phase distortion, analysis/synth=s Zzer
approximating ideal bandpass filters, etc. In [4, T Zser
banks are designed based on the statistical properc= =ia-
put signals so that energy is maximally compacted = = :ae
first few filter bank channels (subband componen=. Tiis
results in a Principal Component Filter Bank (PCZ= =iu-
tion. The resultant filter bank minimizes the mear—s—zred
error when only Q out of P subband channels are us= = :ie
reconstruction. The formulation in [4] only consid=~= -me
dimensional signals. This formulation was later z===ed
in [5] to two dimensional signals where the subse—=ing
matrices were restricted to be separable. Furtherm—= :ae
formulation in [5] does not allow for generalizatior =nd
two dimensional signals. Here, the 1D principal com——ent
filter bank formulation is generalized to MD signes wmng
non-separable resampling matrices. Moreover, it & —7en
that the resultant PCFB simultaneously maximiz= <eo-
retical coding gain (TCG), and hence, are opticz = an
information theoretic sense as well.
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2. MD PRINCIPAL COMPONENT FILTER
BANKS

2.1. Minimization of Reconstruction Error
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Figure 1: A Typical P-band Paraunitary Filter Bank

Consider the paraunitary [7] filter bank structure shown in
Figure 1, where nis the column vector [no ny - - mng—y ]
zZ = [20 2z -+ z4-1]" denotes the d dimensional Z
transform variable, M is a d x d nonsingular integer matrix
referred to as a resampling matrix 7}, and J(M) denotes the
absolute value of the determinant of M. The input signal
z[n] is split into P = J(M) subbands via a bank analysis
filters. The outputs of these filters are band limited, and
hence can be subsampled at their respective Nyquist rates.
The subband signals are then processed. The processed
subband signals are upsampled, increasing their sampling
rate to the original rate. The upsampled signals are inter-
polated via the bank of synthesis filters. The outputs of
the synthesis filters are averaged to form the reconstructed
signal Z[n]. Given a discrete, MD, random signal, z[n], and
the structure in Figure 1, the goal is to design the analysis
and synthesis @ band filters hi(2), fi(z),+=0,1,...,Q -1
that minimize

N-1

> B{(xn] - 2[n])"(xn] - k[n])},

N—oco HO N‘. n=0 ( )
1
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where 1 is a d dimensional column vector with unity com-
ponents, and N =[Ny N N4_1]%. The terms x[n]
and %[n] are the Type 2 polyphase representations [7] of the
input signal z[n] and the output signal reconstructed from
only Q out of P subband components respectively.

Theorem 2.1 Let x[n] be a P-vector, zero mean, second-
order process with time varying autocorrelation matriz

Rxx(n;7) = E{x[n + r]x"[n]}, (2)

such that its entries are uniformly bounded. Let Rxx[r] be
the time averaged autocorrelation matriz

N-1
. 1 .
Rxx(r) = Nhglw ﬁ 2;3 Rxx(n;) (3)

and Sxx(w) the time averaged spectral density matriz
oo e
Sxx(w)= ) Rxx(r)e 7, (4)
T=—00

where, w = [wo wy wa-1]T. The optimal parauni-
tary @ x P and P x Q matriz filters H{w), F(w) minimize

N-1
=k 1 x[n] — %[n])T(x[n] - [n
7= Jim T, ,Z%E{( [n] - [n])"(x[n] - %[n])},

(5)
where
(] =) Fln-kyk], ylk=> Hk-1x[, (6)
k 1

if and only if
H(w)=[vo(w) vi(w) ve-1(w)]™" T(w),

F(w)=H™(w), (7
where vi[w] is the eigenvector corresponding to the (i+1)th
largest eigenvalue of Sxx(w) and T(w) is any Q x Q unitary
square matriz for all w.

The filter banks from Theorem 2.1 are called the generalized
PCFB’s. If T(w) = I, the filter bank is called the PCFB.
Proof: We can write the cost function (5) in the frequency
domain as

N"l 2x1
: 1
=N 4=t o, g /o
tr{(I — G(w))Sxx(n;w)(I — G(w))T*}dw, (8)

where Sxx(n;w) is the Fourier transform of Rxx(m;7),
G(w) = F(w)H(w) is the composite P x P filter of rank
Q, and the integral is for every component of w. Hence, we
need to find the optimal G(w) which minimizes (8). From

(8),
2x1 N—l
— .m —_—1
Io= A Nl'l—ooo Ho—l 27|'N|‘ I§)
tr{(I - G(w))Sxx(n;w)(I — G(w))T*}dw. (9)

Finally,

1 vl . Ta
I= o /0 tr{(I — G(w))Sxx(w)(I — G(w))™* }dw,

(10)

where
1 N-1
Sxx(w) & lim ——— Sxx(m;w). (1)
N—'oo HO lNi BLV:—;)

In order to minimize (10), the integrand must be mini-
mized for every w. The integrand can be written as

tr{(8xx (w) = G(w) 33 (w))(5k (w) — c:(w)s;f,:(u))rol}z_
Then, the rank Q matrix G(w) minimizes (12) iff

Q-1

Gw) =Y vi(w)vi"(w), (13)

j=0

where v;(w) is the normalized eigenvector corresponding
to the (j + 1)th largest eigenvalue of $3/2(w) and hence of
Sxx(w). It is easily verified that H(w) and F(w) given by
(7) are the unique solution of (13). |

2.2. Maximization of the Theoretical Coding Gain

In this subsection, we prove the above PCFB maximizes the
TCG. First, let us prove the following lemma.

Lemma 2.1 Given a real-valued signal z[n] with zero mean
and variance o2, and any invertible transform which maps
z[n] to a series of P signals {zi[n],i=0,1,..., P —1} with
variances {o? # 0,1 =0,1,..., P — 1}, where

P-1
2 2
E g; =0g.
=0

If
P-1
V 6%,  such that Z HE (14)
i=0
and
Q-1 Q-1
V0L Q<P such that ol > 57, (15)
$=0 i=0
then
P-1 P-1
ot <[4, (16)
i=0 i=0

where the equality holds iff ? = o?, 0 < i < P.
Proof: From (15),

> 0<i,j<P. (17)

ol > a;‘f, for 1<y,
Without loss of generality, assume

5 >68}, for i<j 0<ij<P,  (18)
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and

~2

7 =0 + € —€iq1, for ¢=0,1,...,P~-1, (19)

with ep = 0. We have

P-1
-2
P

P-1

= Z 07 + €0 =>€e =0, (due to(14))

1=0 1=0
and
V1<@<Ph
Q-1 Q-1 :
Sa - S
i=0 =0
= ¢g>0. (from (15)) (20)
Let
Py P-1
fler,e2,...,€p_1) = H 52 = H(a’? + € — €i41).

i=0 =0
Then, for j=1,2,...,P -1,

8f(€1, €2y.0.,
B¢;

€p-1)

(03-1 + €51 —€5) —

2
(05 + €5 — €j41)
= o‘?_l —o'_, >0,

The last inequality comes from Inequality (18). Hence,

f(e1, €2,...,€p_1) is nondecreasing with respect to ¢, j =
1,2,..., P—1. Since ¢; > 0 (Inequality (20)),7 =1,2,..., P—
1,

a1

1=0 £=0
where the equality holds'iff ¢; = 0, + = 0,1,..., P, t.e.,
62 =02,i=0,1,...,P—1. [ ]

Now we are ready to prove the PCFB maximizes the TCG.

Theorem 2.2 The TCG of the MD uniform paraunitary
filter bank as in Figure ! with resampling matriz M for a
zero mean cyclo-wide-sense stationary input signal z[n) with
a periodicity matrizc M is mazimized iff it is the PCFB.

Proof: Denote by x[n] the Type 2 polyphase representa-
tion of the input signal z[n], hence x[n] is a zero mean vec-
tor WSS (wide-sense stationary) process. From the proof
of Theorem 2.1, for any Q < P,

2x1
J = / tr{(I — G(w))Sxx (w){I - G(W))T‘}d‘“’l

0
2wl

B /0 tr{Sxx(w)(I - Gw))™ (I - G(w))}dw,
2=l

= / t'r{Sxx(w)Gemp}de
0

where
Gemp = I — G™* (w) — G(w) + GT*(w)G(w)

Since

G(w) = F(w)H(w) = B (w)H(w),
where H(w) is a Q x P unitary matrix (i.e., H(w)HT*(w) =
I), the rows of which are the polyphase 1 representations {7]
of the first Q subband analysis filters ;(z),1 =0,1,...,Q—
1, we have

Gimp =I — HT*(w)H(w).

Hence

2x1
J / tr{Sxx(w)(I - BT*(w)H(w))}dw,
0

2rl
= /(; tr{Sxx(w)BT*(w)H (w)}dw,

2xl
/0 tr{f{(w)Sxx(w)ﬂ'T'(w)}dw,
P-1
Z ‘7361
icQ

where the rows of A(w) are the polyphase 1 [7] represen-
tation of the last P — Q subband analysis filters h:(z),

1=QvQ+1;1P—1 andzpl 2 dafOfOI'Q P.
If and only if the generalized PCFB s are used,
P-1 P-1
Jmtn = 0'!2,‘- = 0':“.
i=Q 1=Q
ie., Zf’_‘; a':‘ is minimized, or ‘Q'ol o3, is maximized

because ' 2. is constant given x[n). Moreover, if and
Vi gi

only if the PCFB is used, Z;_o cr,' are maximized for all
Q=1,2,..., P. Other generalized PCFB’s do not work for
all Q. Hence, from Lemma 2.1, the geometric mean of 03‘.,
1=0,1,..., P —1is minimized if the PCFB is used, which
proves the theorem. ]

3. SIMULATIONS

The algorithm to generate the PCFB has been designed [8]
and implemented. Some of the simulations for the 256 x 256
cameraman image for all seven different resampling lattices
where J(M) = 4 are furnished here. A comparison of the
PCFB to traditional parallelogram filter banks is shown in
Figure 2 and Table 1 in terms of the TCG and the transform
efficiency. In the table, M =[a b&;c d]is the 2x2 resam-
pling matrix. Figure 3 shows the results for reconstructing
an image from only the first subband signal.

4. CLOSING REMARKS AND FUTURE WORK

In this paper a design technique for the MD Principal Com-
ponent Filter Bank is presented. The resulting principal
component filter bank decomposes the input signal into un-
correlated lower rate principal components. The filter bank
is optimal in the mean squared sense when a limited num-
ber of subband channels are used to reconstruct the original
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[Resamp. M | Effi. for PCFB | Effi. for Trad. FB ]

1, [20;0 1 94.5% 48.1%
2, [41;01 97.4% 48.1%
3,142,01 97.5% 48.1%
%, (4301 97.3% 48.1%
5, [2 0;0 2 97.3% 96.9%
6, 2 1;0 2 97.5% 96.7%
7,110;0 4 96.3% 48.8%

Table 1: Transform Efficiency for PCFB and Traditional
Parallelogram FB for different resampling matrix when only
the first subband is kept

TCG for Cameraman Image

TCa in dB

Resampiing Matrix

Figure 2: TCG for PCFB and Traditional Parallelogram
FB

Figure 3: The Reconstructed Image Retaining Only One
Subband Using Traditional Parallelogram FB (1st row, left
for M5, right for M4) and PCFB (2nd row, left for M5, right
for M4) and the First Subband PCFB Filter for M5=[2 0;0
2] (3rd row, left) and M4=[4 3;0 1] (3rd row, right)

signal. It also maximizes the TCG. The simulations indi-
cate that the PCFB depends on the resampling matrix. In
[8], we show that the appropriately chosen resampling ma-
trices generate better reconstructed signals. For stationary
signals, a theoretical proof [8} shows that the input (spec-
trum) hardly affects the PCFB.

The MD PCFB can be potentially applied to a wide
range of areas, including data compression, data storage,
model reduction, feature extraction, pattern classification
and segmentation. In addition the design of FIR PCFB’s,
nonuniform PCFB’s, and the efficient parameterization of
PCFB parameters is under investigation.
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