A MEASURE OF NEAR-ORTHOGONALITY OF
PR BIORTHOGONAL FILTER BANKS

Frangois Moreau de Saint-Martin', Albert Cohen?® and Pierre Siohan!

! CCETT, BP 59, rue du Clos Courtel, 35512 Cesson-Sévigné cedex, France

? CEREMADE, Université Paris-Dauphine,
place du Maréchal de Lattre de Tassigny, 75016 Paris, France

ABSTRACT

We study the non-orthogonality of perfect-reconstruction
(PR) biorthogonal filter banks by measuring the en-
ergy preservation between the spatial and transform
domains. The mathematical formulation of that issue
leads to the computation of the Riesz constants, and a
more relevant modelization leads to a measure of near-
orthogonality which is well suited for image compres-
sion systems based on filter banks. This provides a
criterion for the validity of the energy preservation ap-
proximation: we can compare the latter approximation
with the one that is made when estimating the percep-
tual quality of an image by the mean square error.

1. INTRODUCTION

While most of the transforms used in signal process-
ing are orthogonal, some biorthogonal transforms have
been introduced in the last few years, among which the
most famous are the biorthogonal wavelet transforms.
Orthogonal transforms have some nice properties, such
as energy preservation, that are often used in quanti-
zation procedures and bit allocation algorithms.

These properties make the orthogonal transforms
very attractive, but in the case of dyadic wavelets,
orthogonality is non-compatible with phase-linearity,
which seems to be relevant too. For that reason some
authors have tried to synthesize biorthogonal filter banks
as orthogonal as possible. As both analysis and synthe-
sis low-pass filters are identical in the orthogonal case,
they have tried to make both low-pass filters as simi-
lar as possible: less dissimilar length, filter coefficients
close to each other [1], £2-norm [2], qualitative close-
ness of the frequency responses, with equality at given
points [3].

The similarity of both low-pass filters is one out
of many properties of orthogonal filter banks, which
is not very relevant in itself. Therefore, in the debate
about the relevant criteria, we need a relevant measure
of the near-orthogonality of biorthogonal filter banks.
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Figure 1: Example of a 4-band filter bank.

Kronander [4] has already proposed an “orthogonal-
ity measure”, which however does not provide any en-
ergy preservation control. Therefore we study near-
orthogonality with relation to energy preservation and
present three main results:

e The computation of the Riesz constants of the
underlying Riesz basis, as a result of the mathe-
matical formulation;

¢ The definition of a new measure of near-orthogo-
nality, which is well suited for image compression;

o A discussion on the validity of the energy preser-
vation approximation.

2. FILTER BANKS AND RIESZ BASES

We consider M-band filter banks like the one in Fig-
ure 1. The analysis part consists of filtering and dec-
imating the signal in each subband. The quantization
part is modelled by the addition of a quantization noise,
whatever the algorithm might be. The synthesis part
consists in upsampling and filtering the signal in each
subband and in adding all the subbands. We consider
perfect reconstruction (PR) filter banks: Without any
quantization error, the reconstructed signal is the orig-
inal signal, up to a delay. Such PR filter banks may
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be orthogonal or not. In the latter case, we call them
biorthogonal filter banks. We use 1-D notations, but
the N-D extension is straightforward.

Energy preservation is the most widely used prop-
erty of orthogonal transforms for signal compression
applications. With a biorthogonal filter bank, this prop-
erty does not hold anymore, but we want to keep it as
an approximation. E.g., let us consider an usual bit
allocation algorithm: The bit allocation satisfies rate-
distortion optimality. For such an algorithm we assume
rate and distortion to be additive over the subbands
[5, 6]. In other words, we want the sum of the subband
square errors to be close to the reconstruction square
error. That means that there exist two constants A
and B, close to 1, so that, whatever the quantization
might be:
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where ¢ denotes the reconstruction error (in the time
domain) and c¢; the quantization error in the subband
i
In mathematical terms, we consider the filter bank
transform as a decomposition over a non-orthogonal
discrete basis of the signal space (See [7, chapter 11]
for details). Relation (1) means that this basis has to
be a Riesz basis: we want to calculate the optimal Riesz
constants A and B. Such decompositions have already
been studied as Riesz basis [1, 8], but the computation
of the optimal constants A and B has not yet been
addressed.

Actually, we are able to calculate them by consid-
ering the reconstruction error in the frequency domain
(cf. Fig. 1):

M
Ew) =Y Cj(Mw)Gj(w). (2).
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The corresponding energy is given by:
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That means that the optimal constant B is the
supremum of the spectral radius of the operator M(w).

We denote the spectrum of M(w) by Sp(M(w)) and we
obtain:

B = su max A 6
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This result can be extended to the multidimensional
case. We can remark that in the usual two-band case
the eigenvalues of M(w) can be computed explicitly,
and that: AB =1.

Application to iterated filter banks The major
motivation for this study is the use of biorthogonal
wavelet transforms. In order to apply our results to
iterated filter banks, we consider the equivalent paral-
lel filter banks. We need filter banks with the same
decimation rate in all subbands. Therefore we apply
our results to the 27-band filter bank made of the fil-
ters:
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k=0...22-1,j=0...0-1

which can be shown to hold the same Riesz constants
as the iterated filter bank.

There is no simple link between the Riesz constants
Bj of the iterated filter bank and B; of the simple
2-band filter bank, except that By < Bj, which is
straightforward by induction. A complementary result
can be obtained for regular wavelet filter banks: We
prove in [9] that B, increases to a finite limit as J
increases to (+c0).

As a conclusion we obtained in that section a mea-
sure of near-orthogonality which is easy to calculate
and based on a precise mathematical background. This
measure holds for each application implying the energy
preservation principle and for each biorthogonal PR fil-
ter bank transform.

3. QUANTIZATION NOISE
MODELIZATION AND MEASURE OF
NEAR-ORTHOGONALITY

In this section, we study to what extent the Riesz con-
stants are an adequate measure of near-orthogonality
for signal compression applications and we derive a
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more relevant one. The mathematical measure of near-
orthogonality is based on the worst situation, corre-
sponding to very particular quantization noises. It is
not very relevant to compare such quantization noises,
in order to measure the approximation which is done
when taking the sum of the subband distortions as the
global distortion in the bit allocation algorithm: We
would rather use an average value, based on a mathe-
matical expectation.

We firstly assume that the quantization is done in-
dependently in each subband, so that the interference
terms have a zero mean, and secondly that in each
subband the energy is distributed on all the frequency
spectrum. However, the energy N; may be different
from one subband to another. It is quite common in
image compression to quantify differently different sub-
bands, according to the statistics of the signal and to
some psychophysical properties.

With that new modelization of the quantization
noise, we obtain as the mathematical expectation of
the error:

"
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We control therefore the resulting error as:
M
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where we defined the near-orthogonality measure by

P12
NOM =]-£11?.XME|9£'I (11)

If we suppose that the noise has the same energy
in all the subbands, that means that the quantization
noise is completely white, and from another point of
view, it is easy to prove, using the perfect-reconstruction
property, that the resulting formula is equivalent to the
measure of the square error between both low-pass fil-
ters. Thisis the criterion of near-orthogonality that has
been used in some former syntheses [2]. As we want to
take into account possible differences of energy between
the subbands, we measure the near-orthogonality with
NOM.

Some other measures might be derived from our
method with different modelizations of the quantiza-
tion noise, but this one is very simple and corresponds
to a reasonable noise modelization.

Extension to iterated filter banks

The extension to iterated filter banks is straightforward
and consists of considering the equivalent parallel filter
banks, made of the synthesis filters G;, and in defining
NOM; as:

NOM; = j:rlle?}&l z,.: |95;|2 (12)

Extension to 2-dimensional filter banks
The results of that section are .easy to extend to 2-
dimensional filter banks:

; 2
NOM =,-£’1‘?."M§ |9, m] (13)

The NOM of a separable filter bank made from a 1-
dimensional filter bank with NOM = m,, is m?.

4. VALIDITY OF THE ENERGY
PRESERVATION APPROXIMATION

The aim of our study of near-orthogonality is to see
when the approximation of energy preservation is ad-
missible: We look for the NOM values that let us as-
sume the energy preservation with an accuracy which
is significant for image compression. This significant
accuracy of the SNR of the reconstructed image is an
open question, but one usually does not see any qual-
ity difference between reconstructed images when the
SNRs differ with less than 0.5 dB (1 dB for high qual-
ity reconstruction). That means that, when allocating
the bits, the estimation of the resulting distortion may
be 0.5 dB inaccurate. The accuracy of this estimation
is given by the near-orthogonality measure, so that the
quantization energy preservation is a valid approxima-
tion if NOM < 1.12 (1.26 for high quality reconstruc-
tion).

We tested the measure on different 4-band sepa-
rable PR filter banks, with the usual dyadic iteration
scheme. The orthogonality measure only depends on
the synthesis filters, so that the results are generally
different when you exchange analysis and synthesis fil-
ters. However, in the dyadic case without iteration,
there is no difference because of the relationship be-
tween analysis and synthesis filters [1]: The low-pass
analysis filter has the same energy as the high-pass
synthesis filter. The results are presented in Table 1.
We see that some iterated wavelet transforms may be
considered as nearly-orthogonal, even for low-rate com-
pression (NOM < 1.12), and some others only for high
quality compression (NOM < 1.26).

5. CONCLUSION

We addressed in this paper the issue of measuring how
orthogonal a biorthogonal transform is: The measure
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Riesz | Riesz Near-Orthogonality Measure NOM

A B | No iteration | 4 it. over Hy | 4 it. over Gy
Cohen-Daubechies 7-9 [1] 057 | 1.75 1.08 1.12 1.20
Burt-Daubechies-Cohen 5-7 [1] 091 1.10 1.04 1.04 1.09
Vetterli 20-24 [10] 0.13 | 7.83 2.40 2.40 5.14
Vetterli 18-18 {10 033 3.00 1.43 1.88 3.85
Nguyen 23-25 [11 0.24 | 4.23 1.27 1.27 1.52
Ikehara [12] 0.60 | 1.69 1.09 1.09 1.21
Le Bihan-Rioul [2] (Similarity) 050 | 1.99 1.09 1.09 1.13
Le Bihan-Rioul [2] (Frequency Selectivity) | 0.28 | 3.62 1.22 1.22 1.28
Onno (Frequency Selectivity) [13] 0.28 | 3.58 1.11 1.21 1.26
Onno (Regularity) [13] 0.30 | 3.32 1.11 1.19 1.23

Table 1: Near-orthogonality measures of 2-D separable PR filter banks constructed from a set of “classical” filter

banks.

may depend on the application and on the modeliza-
tion, and we propose a simple one, well suited for image
compression. It is derived through a modelization of
the quantization noise from the principle of the Riesz
constants computation.

We get from that measure a criterion for the validity
of the quantization energy preservation. As the recon-
struction quality decreases, the condition gets stronger.
Especially for low-rate image compression, one need to
take the measure of near-orthogonality into account in
the choice of the transform, if the energy preservation
property is used in the quantization algorithm
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