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ABSTRACT

This paper deals with the recovery of an image when
some partially redundant subband data has been irre-
versibly corrupted. The approach presented assumes
an overcomplete subband decomposition and uses a lo-
cal Optimal Recovery estimator that works as a block
processing scheme. The method takes advantage of
the inherent correlation and redundancy among the re-
maining uncorrupted subband data. We view this ap-
proach as an alternative or as a complementary method
to be used with forward error correcting codes requir-
ing only error detection capability. We test the perfor-
mance using row/column separable processing on im-
ages.

1. INTRODUCTION

Subband Coding (SBC) of signals and images remains an
important area of research related to multirate digital signal
processing. There is a need to develop new lossy data com-
pression schemes capable of competing or surpassing block
transform methods (like the DCT used in JPEG) which
often present blocking effects and other disadvantages.

Most of the work in SBC has focused on using Mauzi-
mally Decimated (MD) systems since the amount of sam-
ples in the subbands is the same as in the original signal.
Furthermore, most of the work on filterbanks assumes ideal
transmission of the subbands and no errors from quantiza-
tion.

In order to protect the subband data from losses during
transmission, Forward Error Correcting (FEC) codes can
be used. This implies the addition of redundant bits which
reduces the amount of compression achieved with the SBC
scheme. Nevertheless, there are instances where the noise is
so high that the FEC decoder will fail to recover the correct
binary sequence. Another possible source of data loss may
be caused by buffer overflow due to processing delay at the
receiver. In both cases, once the data is lost there is no way
to recover it and the reconstructed signal will be distorted.
The distortion will be more noticeable if data is lost in the
low frequency subbands. An approach to this problem is to
replace with zeros the corrupted samples. This is usually
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enough for the case of high frequency subbands, but it may
lead to unacceptable reconstruction error for losses in the
low frequency subbands.

In this article, we propose to add information redun-
dancy so that the effect of data losses during transmission
is minimized when an optimal signal recovery algorithm
is used. The scheme consists of the use of Overcomplete
(OVC) subband decompositions with an optimal linear es-
timation procedure. An OVC system is not an MD system
since the number of channels N is greater than the decima-
tion rate M, leading to the presence of extra information
in the subbands. A method to design FIR synthesis filters
for any M and N using Optimal Recovery (OR) theory has
been obtained in [1] and [2]. With this design technique,
we can always obtain the best constrained-length FIR syn-
thesis filterbank for any subband decomposition.

2. OVERCOMPLETE SUBBAND
DECOMPOSITIONS

The redundancy in OVC subband decompositions offers all
types of possibilities when assigning the spectral coverage
for each subband. To see this, consider the MD system
with M channels. MD systems typically split the spectrum
into M equal bands with filters having essential bandwidth
4+ Thus for the case in which ¥ > M, we have more
channels than necessary to cover the range [—,x). This
requires some strategy to assign the spectral coverage of
the subbands which will allow us to take advantage of the
redundancy.

Let’s consider the simplest OVC system which would
have M =2, N = 3 asin Fig. (1). We note that a system
with a similar structure is obtained from a 2-level dyadic
decomposition which gives 3 channels. If we adopt this
spectral subband assignment for the OVC system, we no-
tice that the low frequency channels are not maximally dec-
imated. Therefore, this type of system adds redundancy at
the low frequencies by leaving these subbands oversampled.
This is an appealing feature in SBC since we are protecting
the low frequency information.

For the system with M = 2, N = 3, we show in Fig. (2)
the magnitude responses of the three analysis filters to be
used in this paper. Using the design technique developed
in [1] and [2], we can obtain corresponding FIR synthesis
filters that give very accurate reconstruction. The applica-
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tion of these analysis and synthesis filters to images is easily
achieved using the row-column separable approach.

3. OPTIMAL RECOVERY FROM SUBBAND
DATA

In this section we describe a signal reconstruction approach
based on a locally optimal linear estimation procedure that
can be easily modified to take into account missing data.
Our problem consists of finding the signal #(n) that best
fits the given subband data over a short time frame.

We start by defining a set Y which is formed by all the
subband data received at the synthesis system. Each ele-
ment in the set is denoted by yx,: or yx(i), where k denotes
the subband index and i denotes the already decimated
time index (decimated by a factor M). The approach in
this paper uses a subset of subband data to estimate only
a small number of values for z(n) at a time, see Fig. (3).
First we assume that there is no missing data, but in the
next section, we make the required modifications so that
the procedure can operate optimally despite missing data.

We define the representors for the undecimated sub-
bands as

$x(n) = F T {Hi(w)} = hi(—n) (1)
which allows us to express the scalar yx(i) in the time do-
main as

oo

w(@)= Y z(m)gi(m — Mi) = (z(m), $(m — M3),,

m=-—00
(2)
There are an infinite number of input signals that can
produce a given finite subset of subband data from Y. How-
ever, the minimum norm solution Z always gives the best
linear estimate for a given set of data [3]. The expression
for this solution is [4]:

N t4lg
T(n) = z Z wk,;9x(n — Mj), (3)
1j=¢-L;

where the L; and L2 bounds determine the extent (of size
L = L) + Lz + 1) of the time window that defines the
actual subset of subband data used in this case. We will see
that only M values are to be computed from each subset of
subband data.

To find the {wk,;} values using the available subband
data, we enforce the conmstraint that Z(n) produces this
data, therefore

Ya() (x(m) $q(m — M1)),,
= Ek =1 Z]-f:Ll Wk,j <¢“(m M), ¢q(m — M')>
= Ek- _.z L1 Wk,;9q,k (M (5 — 1)),
(4)

for —L; €1 < Lz, and 1 < ¢ < N, where ggx(m) is a value
of a cross-correlation between two impulse responses.

For a particular subband coefficient subset, we can form
a vector y¢ of yq; values and form N L linear equations like
(4). Using matrix notation we get

Y= Gew, (5)

and thus G, must be inverted. To make the estimator prac-
tical, the values of L; and Lz should not be very large
in order to keep the inversion of G, from being compu-
tationally expensive. In this paper, we implement the es-
timator using a frame by frame, block processing proce-
dure to estimate M samples of z(n) at a time. That is,
each time we select a subset of subband data, we calcu-
late only one frame of estimated samples denoted z} =
[ Z(no) Z(mo+1) Z(no + M —1) ) where no = M.
The next step is to obtain another subset of N L coefficients
from Y, and to increment £. Then, the corresponding G,
matrix is formed and the vector of weights w, is calculated
so that a new z; can be computed.

Going further, we see that Eq. (3) can be expressed in
vector notation and rewritten using (5) in the following way
for a fixed value of n:

~ - A

z(n) =8l - we=sl .G 1.y 2cT .y, (6)

Since a frame ). is estimated linearly to obtain z,, an
expression for this estimation is

=C; -y, M

where the C, estimator matrix is obtained by stacking the
M T vectors. Clearly, to recover other frames, we need to
repeat the process and re-calculate the estimator matrix. In
the case where no data is missing, it is easy to see that the
estimator matrix will not change and thus C;, = C. From
this we note that (7) can be identified as the polyphase
filtering process commonly used in multirate systems, and
that we can obtain FIR synthesis filter coefficients from C
for arbitrary M and N [1], [2].

The selection of parameters L; and L; is made accord-
ing to the desired accuracy. In the no data loss case, the
estimator and OR filters use the same quantity of subband
data at a time, where the filter length is M(L; + L2 + 1)

(2]

4. SIGNAL RECOVERY WHEN SUBBAND
DATA IS LOST

Suppose that for a given frame we discard in the vector
Y: some of the samples corresponding to missing data. In
terms of equation (5) this translates into discarding the cor-
responding rows and columns of G so that a square matrix
is preserved. The corresponding vector w, is reduced in size
as well, but we still obtain the best possible frame estima-
tion from the available data. Therefore, an effective way
to deal with data corrupted by burst errors is simply to
discard it in the above process.

We can use a minimum amount of channel coding in the
subband data so that we can detect only the occurrence of
errors at the receiver. Let’s define a set D, of ordered pairs
which indicate the subband and time indices of the samples
that have been corrupted for the recovery of frame A;. Thus,
our estimator equations are slightly changed to

= Zf:l ;:ijl wk1J¢k(n - M])1 (8)
(k,7) ¢ D
and
Ye= Gewy, Yo,i € ¥e < (g,4) € Do (9)
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As we can see, the size of the estimator matrix G, will
vary from frame to frame, depending on the number of cor-
rupted samples discarded from the subset. The matrix in-
verse has to be calculated continuously for each frame which
can be computationally expensive and time consuming. To
avoid this problem, we could pre-compute a set of matrices
and store them to be used as needed.

5. APPLICATION TO IMAGE TRANSMISSION
USING SUBBAND CODING

In this section we present:the advantages of the combina-
tion of OVC decompositions and the OR frame by frame
estimator when these are used to code images which are
transmitted over lossy channels. A version of this problem
was considered in [5] for the MD case. We assume a very
simple SBC transmission scheme and reliable error detec-
tion to identify the corrupted data. We concentrate only on
burst errors along subband rows (consecutive subband sam-
ples are lost) since the scheme is expected to work better
when the lost data is far apart.

We assume that separable SBC is done by filtering first
along rows and then along columns. For simplicity, the re-
sulting subbands are scanned row-wise (but the estimator
can adapt to other scanning patterns [6]) and transmitted.
At the receiver the process takes place in reversed order.
The illustrated system with ¥ = 3 and M = 2 uses the
analysis filters with magnitude responses shown in Fig. (2).
In order to reconstruct the columns where there is no lost
data, as well as all the rows of the image, a set of syn-
thesis filters for this OVC system were obtained using the
procedure in [2].

A block diagram of a “hybrid” reconstruction proce-
dure is shown in Fig. (4). The recovery process at the
receiver starts by detecting blocks of samples where errors
have occurred. Then the subbands are reassembled and
processed column wise in two manners: error free columns
go through the normal filtering process, while columns in
which at least one of the subband samples presents error,
use the OR block processing estimator introduced in the
previous section. Finally, the rows are processed in the
usual way using synthesis filters. Hence, we obtained a pro-
cedure that tolerates large burst errors, since transmission
is done row wise, while recovery from error is done column
wise.

As an example, we use a 512 x 512 version of Lena, and
introduce two blocks of dimension 3 x 6 pixels on the LL
subband around the left eye and nose, as shown in Fig. (5).
For the OR estimator, we used L; = 7, L, = 8 while for the
filters we used L; = 0, L, = 8. Note that in our procedure
we could easily vary the level of accuracy of the estimator
by adaptively changing the L; and L2 parameters. The
reconstructed images for different vertical dimensions for
the error blocks are presented in Fig. 5. As expected, the
recovery capability of the estimator is inversely proportional
to the size of the error gap [7] .

6. DISCUSSION

Information theoretic redundancy schemes like channel cod-
ing have a limited ability to correct random errors. Requir-
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Figure 1: An Overcomplete (OVC) subband decomposition
system.

ing only error detection capability, the procedure presented
here is fitted to a lossy compression scheme where only a
good approximation is the main goal. We note that obtain-
ing the estimator for each frame is computationally inten-
sive due to the matrix inversion in Eq. (5). However, these
matrices can be pre-computed and stored so that they can
be retrieved as needed.
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Figure 2: Frequency responses of the the 3 analysis filters
suitable for OVC subband decomposition.
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Figure 3: The frame by frame optimal recovery estimation
procedure.
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Figure 5: From top to bottom: the LL subband with the
missing data (3 pixel vertical gaps); the reconstructed image
with 3 pixel vertical gaps; the reconstructed image with 2
pixel vertical error; the reconstructed image with 4 pixel
vertical error.
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Figure 4: Use of OR estimator for reconstruction when er
rors are detected.
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