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ABSTRACT

In this paper, I consider about the theory of modulated 2
Dimensional (2-D) perfect reconstruction (PR) filters banks
with permissible passbands At first, I design a 2-D complex
digital filter with half passband obtained by the sampling
matrix. Next, 2-D analysis filter banks are realized by
modulating this prototype 2-D complex digital filter and
by taking the real part of the output. It is also shown that
the modulation in 2-D frequency plane is equivalent to
1-D DFT. A necessary and sufficient condition for 2-D
perfect reconstruction filter banks is derived. Finnaly 1
show some examples.

1. INTRODUCTION

Analysis/synthesis multirate filter banks find applications
in a wide variety of digital signal processing systems. 1-D
filter banks have been well studied and various design
approaches have been successfully developed. Recently,
the concept of 1D filter bank is extended to the
multidimensional case including 2-D. In particular, I
proposed a design method of 2-D PR filter banks using
2-D N-th band digital filter and 2-D DFT. However time
-reversal operators have been used and the analyzed signal
is complex because of 2-D DFTJ1]. On the other hand, the
method mentioned in [2] is very efficient but, with finite
impulse response filters, the resulting filter banks can only
achieve approximate reconstruction. Also I proposed cosine-
modulated 2-D PR filter banks for processing real signal(3].
Although this method is very efficient, it is said that the
passband supports are nonpermissible[4]. That is, there are
some spikes in the stopband.

In this paper, I present a design method of 2-D PR filter
banks with permissible passbands by modulating a
prototype complex 2-D FIR digital filter. Itis very
difficult to design 2-D PR filter banks directly because the
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number of coeflicients is more than 1-D PR filter banks.
Then [ design a complex 2-D digital filter as prototype
which have triangular passband. It is shown that 2-D PR
filter banks can be realized by modulating a complex
prototype filter and by taking the real part of the output.
The modulation matrix in 2-D frequency plane is equivalent
to 1-D DFT. Finally, a necessary and sufficient condition
for 2-D PR filter banks is derived. I show some examples
and apply to the subband coding.

2. PRELIMINARY
I simply explain 2-D sampling theory[6][7]. In 2-D
plane, the integer lattice A is defined to be the set of all
integer vector n=(n,n,)' With z defined as vector,
z=(z,2;)" and z" defined by 2" =z}'z32. Assuming the
sampling matrix be as follows,

D-1d, dyi=[¢¢] )
z  is defined by
=) @

Fig.1 shows 2-D analysis/synthesis filter bank. When
x(n) =y(n), it is said that the system achieves perfect
reconstruction. The Furrier transforms of y(n), denoted as
Y (w), can be expressed in terms of the Furrier transforms
of the input signal and filters as

D-1D-1
Y@=3 >:0 L X(o-w) H, (o @) Fla) (3),
j=0i=0
where D =|det(D)|. @= (e, )" and @ are the aliasing
offsets, @ =2rD"'k,, The vectors k, belong to X(D"),
which is the set of all integer vectors of the form
DTx forxe [0.1). )

Fig. 2 shows some decomposition schemes for decimation
by the sampling matrix D=[2 1;-1 1} with analysis filters
having a real impulse response. H,(w) (including origin)
typically has passband in the region.
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Fig.1 2-D Maximaly decimated filter bank

o=1tD""x xe[-1 )T 5)
Boldfaced letters denote matrices and column vector,
with upper and lower case, respectively. The notation
fi(z) stands for Hi(z"") , where T and * denote transposition
and conjugation .
3 MODULATED 2-D FILTER BANKS
A . Decomposition and Modulation

Fig.2 (a) shows the decomposition scheme whose
passbands are symmetric about ® = 0. The filter bank with
this decomposition scheme can be easily implemented by
cosine-modulating the prototype filter of Fig3(a)[3]. But It
is said that this filter bank has nonpermissible passbands{4].
That is, the mgnitude response of these filter banks have
some spikes and can not be good. On the other hand, it is
known in [4] that the passband in Fig.2(b),(c) has permissible
Supports.

In this paper, we consider the decomposition schemes
with permissible passband supports as shown in Fig. 2(b),(c).
To implement this decomposition, I use 2-D complex digital
filters with the triangle passband of Fig.3 (b) and (c) as
prototype filter, respectively. Passbands of Fig2.(b) and
(¢) are obtained by modulating the prototype filters of Fig
3.(b),(c) and by taking the real part of the oatput of the
modulated prototype filters. Fig.4 shows simple example
with the sampling matrix D=[2 1:-1 1]. So I call these
decomposition schemes of Fig.2 (b) and (c) as Type 1 and
Type 2, respectively.

B. Design of Complex Prototype Filter

The complex transfer functions of the prototype filters
with the passband of Fig3 (b),(c) are expressed by the
polyphase components

H@)= ;\:(‘) N {F,-(zD) +iG ,(z")} (6)

where Fiz) and Gj(z) are the real and imaginary part of
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Fig.2 The decomposition schemes
of 2-D filter banks
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Fig.3 The prototype filyters

the prototype filter, respectively. n; are delay vectors
expressed byn; € X(E) . But delay vectors are not unique
as described later.

At first, we compose the complex analysis filters by
modulating the prototype filter of Fig.3(c) as shown in
Fig.4. Then each shift component of the complex analysis
bank is defined by

2nD” 'k, 0
Sifting by the above component corresponds to the following
transformation,

z —exp|j 22D "'k | 07 ®)

where [a,b]T®z = [azl,bzle . Substituting this trans-
formation into (6), each transfer function of the analysis
filters can be written by

N - 1
Alz)= I_)Zoexp [i 2nnlD Tk,] 205 {Fi&® +iG @)
I
©
Then [ show an example. Let the sampling matrix be
D=[2 1;-1 1], 3 channel filter bank is obtained. Then the
shift vectors k; and delay vectors n; are

=3[ e[S [8] 3

and shift components are
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It is surprised that this modulated matrix is same as 1D
discrete Furrier transform. Therefore 2-D complex analysis
filter banks can be expressed as follows..
Afz) = f;ﬁ exp { i2n ( - 95—1) + %}z“i{F,(zD) + iG,(zD)}
(10)

where nt/4 is the phase constraint to ensure that the alias
and the phase distortion can be canceled. Finally, the
analysis filter banks can be implemented by taking the real
part of the complex analysis banks as follows

H(2) =Re {A\2))
Then the analysis filter banks can be expressed in matrix
form as

h@ =[C ") + Sg(z°)] e(z) an

where,e(z) = [1,z7 ™, ...z~ "0-1]"

h(z) = [Hy(2) , H,(@), -+, Hp_ ()]
f(2) = diag [Fy(2) , F1(2), -+, Fp_ (2)]
g(z) = diag [Gy(z) , G1(2), -+, Gp_ ()]

(€], =eos{ %2 (- 551) )

[S],_j =sin { % (j— -D—ilJ + %}

4. THE CONDITION FOR PERFECT
RECONSTRUCTION
I showed that the modulated matrix is equivalent to 1D
DFT. To achieve perfect reconstruction, I impose the
linear phase condition on the prototype filter H(z). So the
following two conditions are required so that H(z) has
linear phase.

1) n;+4np . =2n,

2) F@ ="z, (@),

Gi(2) =-z:"5YGp.1 (2) .G _12(2) =0 for D:odd
where n_is real vector and (N, M ) are the order of F(z)
and G(z). The condition 1) is not always satisfied on all
delay vectors defined by X(E). In this case we must
decide the delay vectors so that the condition 1) is satisfied.
Although this condition dose not necessarily need as shown
later, it is important to design easily the response of
Fig.3(b)(c). The condition 2) shows that F(z) is time-
reversed version of Fj_, (z) . This is important to cancel
the alias.

From (11), the polyphase component matrix E(z) of the
analysis filter bank is expressed by
E(z) =C f(z) + Sg(») (12)
Then the modulation matrixes have the following
relationship

C'C=S8'S=1,C's=§'C=J
where J;, is the inverse diagonal matrix.
It is known from (5] that if E(z) , the polyphase component
matrix of the analysis bank is lossless.i.e. E@E@) =1I,,
then 2-D PR filter banks can be obtained. Then I get

E@)E@) = {?(Z)CTCf(z) + g(z)S'rSg(z)}

r {i‘(z)c"’Sg(z) + g(z)STCf(z)>
and from condition 2), the following relation is kept
f(2) =212000())  8(z) = -2 Ug(2)]
Therefore, the second term on the right side of (13) is
F(2)C"Sg() + g@)S'Clw) =
zTZQ‘J{f(Z)g(Z) - gla)f (Z)} =0

(13)

(14)

As result,
E@)Ez) = ¥(z) f(z) + () g(z)

I get a necessary and sufficient condition for 2-D modulated
PR filter banks as follows

Fia)F (2) + G ()G z) =1

0<,;<D-1

However, owing to the linear phase symmetry of H(z) ,
approximately half of the D constraints are redundant.
Therefore, removing the redundant constraints, (17) can be

(17

expressed as
Fie)F () + G (2)G (z) =1

|D=1
OS/S[ > J

Fo-n2@)Fp-yz) =1 for D:odd

(18)
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In this way, we can design 2-D PR filter banks with
permissible passbands if the real and imaginary polyphase
filter pairs of the complex prototype filter have doubly-
complement.

4. DESIGN EXAMPLE

We now present a design example with the
sampling matrix D=[2 2; -1 1] which defines the so-called
hexagonal decimation. Let N=M=4, we really obtained
the permissible supports for this hexagonal decimation
and their desired frquency response are shown in
Fig.5(a). We design the 2-D filter bank by using the
constrained least-square minimization method of matlab.
Fig.5(b) shows the obtained magnitude response. It can
be seen clearly from this figure that the desired
filters are being approximate.

5. CONCLUSION

In this paper I present a new method of modulated 2-D
perfect reconstruction filter banks with permissible
passbands. At first, I design a 2-D complex digital filter
with half passband obtained by the sampling matrix. Next,
ad analysis filter banks are realized by modulating this
complex prototype 2-D digital filter and by taking real part
of the output. It is shown that the modulation in ad frequency
plane is equivalent to 1-D DFT. 2-D PR filter banks can
be realized by designing only prototype filter whose real
and imaginary polyphase filter pairs have doubly-
complement.

REFERENCE
(1] M.Ikehara," Design of ad Perfect reconstruction filter
banks for arbitrary sampling lattices,” IEEE ISCAS, pp.647-
650,1993
{2] T.Chen, P.P Vaidyanathan,” Multidimenional multirat
filters and filter banks derived from one-dimensional filters”,
IEEE Trans. on Signal Processing, vol.41,No.8,pp.1749-
1765,1993
[3] R.D.Koilpillai, P.P.Vaidyanathan," Cosine-modulated
FIR filter banks satisfying perfect reconstruction.” IEEE
Trans, Signal Process., SP-40,No.4, pp.770-783,1992
[4] M. Ikehara,” Cosine-modulated 2-Dimensional FIR filter
banks satisfying perfect reconstruction,” IEEE
ICASSP,pp.1I1-137-140,1994.
[5] T. Chen, P.P.Vaidyanathan,” Consideration in
multidimensional filter bank design" ISCAS,pp.643-
646,1993

[6] E.Viscite . J.P.Alebach,"The analysis and design of
multidimensional FIR perfect reconstruction filter banks
for arbitrary sampling lattices,” IEEE Trans. on
CAS,vol.38,No.1,pp.29-41,1991

(7] P.P. Vaidyanathan, Maltreat Systems and Filter Banks.

Englewood Clifts,NJ: Prentice-Hall, 1993

Fig.5(a) The desired decomposition sheme with
the sampling matrix D=[2 2; -1 1]
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Fig5(b) The designed magnitude response

1471



