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ABSTRACT

In this paper design methods for regular multidimensional
perfect reconstruction (PR) filter banks are described. A
systematic method for two-channel and four-channel filter
banks is presented. The main novelties are: (1) the fil-
ters have impulse response with square support, rather than
diamond support; (2) regular designs that have rectangu-
lar support are also presented, which are highly efficient in
practice, since expensive memory is saved; (3) in addition to
new diamond filters for the two-channel case, hexagonally-
symmetric filters are also derived; and (4) novel 3-D filter
banks are also designed. In all cases the filters are linear
phase, achieve arbitrarily high regularity and can be used to
obtain biorthogonal wavelet bases. The filter banks can be
implemented in a structurally perfect-reconstruction man-
ner.

1. INTRODUCTION

When 2-D and 3-D signals, such as still images and video,
are coded using filter banks, linear phase of the individual
filters is important. We aim at the design of linear-phase
FIR filters, which also possess the regularity property. Reg-
ularity is a new requirement for filter banks imposed by the
wavelet theory. The 2-D lowpass filter is regular when it
has at least one zero at the point (m, x). The iteration of
a regular filter bank leads to limit functions (scaling func-
tion and wavelet(s)). It is desireable to obtain smooth limit
functions, possibly differentiable. It turns out that regu-
larity can be important in practical applications like still
image and video coding and compression, since regular fil-
ters provide smooth image representation [3]. Hence the
problem is to achieve simultaneously the properties: PR +
linear phase + non-separability + regularity. In this work
we shall present several solutions to this problem.

2. THE 1-D CASE

We start our discussion with the 1-D case because: (1)
it is the simplest starting point and (2) the derived filter
banks will be used later. The perfect reconstruction (PR)
conditions are

Go(z) = Hi(-2) (1)
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Gi(z) = —Ho(-3) (2
and
Ho(z)Hi(~2) = Hi(2)Ho(—z) = 27, (3)
where | must be odd. Suppose now that Hy is a half-
band linear-phase FIR filter of order 2N, where N is odd,
Ho(z) = V2(H&(z) + 0.527"). There are infinitely many
PR filter pairs, (Hg, H1), corresponding to [6]:
Hi(z) = V22N "M _ o (%) Ho(2). (4)

Then H; will be of length 2M + 2N + 1. To have maximum
number of derivatives equal to zero at z = —1 we shall
choose as a lowpass filter

(N=-1)/2 N ‘ N
B = Y (‘i)z'u—z)*“', (5)

i=0

where z = sin’(w/2). This Ho(z) is divisible by (1 +
271" and it can be shown that H; is divisible by (1 —
—1ymin(V,M)
) .

3. 2-D TWO-CHANNEL FILTER BANKS

3.1. Filters with square support

We start with the two-dimensional two-channel quincuncial
case. In this case the PR conditions are

Go(z1,22) = Hi(—z1,—22) (6)
Gi(zs1,22) = —Ho(-21,—2) (M)

Ho(z1, z22)Hi(—z1,—22) — Hi(z1,22)Ho(—21,—22) =
221—2k1+122-2k2~ (8)

If Hoisa 2N +1 x 2N +1 half-band diamond-shaped zero-
phase FIR filter
HY(21,22) = 05 + 21 HY (2122, 2127 ) (9)
Then we can meet the PR condition (8) easily by using
Hy = =2:7t 72 o M(ziz, 5027 ) Ho. (10)

The pair (Hp, H1) can be implemented in such a way that
the PR property is preserved even under finite-word-length
arithmetic (Fig. 1). Filters having at least one zero at
(m, w) are regular. For filters of support 2N +1 x 2N +1
the maximum number of zeros is N — 1.
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Fig. 1 Preserving the PR property implementation

3.1.1. Mazimum number of vanishing moments

Using the bivariate Bernstein polynomial we can obtain fil-
ters with maximum number of vanishing moments.

1 N N-i N N
] { ~1.2i

1=0 j=0
(=11 + 2T SHY 1+ TR =D),
where g; ; = 1 wheni+j < Nand g;; = 0.5 when i+, = \.

Then Hy' has a zero of order N — 1 at (x,7) and HM,
obtained from (10), has a zero of order M —1 at (0,0).

Fig. 3 Analysis and synthesis scaling functions and wavelets
(N = M =35).

3.1.2. Improved frequency response

Now we advance a new method that will ensure some regu-
larity, linear-phase, structurally perfect-reconstruction im-
plementation and improved frequency responses. Here we
are going to use the Bernstein form of a bivariate polyno-
mial

N N R
wen =33 (1) (V) Fu-amva-a

=0 j=0
(11)
Everything is controlled by the coefficients b;;.

1 i+j<L-1
l—a.'+j...1;_1 LSI+]SN—1

bij=4¢ 0.5 i+ji=N
Q2N—L—mlmi—j N+1S_‘i+j$21V—L
0 AN-L-1<i+j<2N

Note that o is a one-dimensional array and whatever values
the coefficients o, have Ho not only will always be half-
band, but will have a zero of order L at w; = w, = .
Therefore the regularity constraint is exactly satisfied. The
solution with maximum number of vanishing moments cor-
responds to i = 0 fori=1,---, N — L. Here we shall use
these N — L additional degrees of freedom to improve the
frequency response in the least-squares sense.

N N-=i-1
Hezp)=Y (N) (1]‘.’)(1 — )1 = gV

i=0 =0

Lo~ (N (N
i 1 ip o AN=i N—igg i
zy+2§(i)(i)z(1 DN - y)
N-L N

N N

+Z°“'[_ 2 (i)(?N—L'—k+l—i)
k=1 iI=SN—L—-k+1

zi(l _ z)n—inN—L—k+1—i(1 _ y)—N+L+k—l+i

L+k-1 N N ,- s
- ; (i)(L+k—1—i)’(1“’)

L+k—1—i(1 N—L-k+1+i] (12)

¥ -y)

It is clear that we can write H(z,y) = cv’(z,y), where ¢
and v(z, y) are vectors

aAV—L]

N N-i-1
SEPEDDDY (”) (?’)(1_,,.)~—f(1_y)~-:

i=0 ;=0

N
a:‘yj + %Z <’:’) <1:{)z‘(1 N Z)N—iyw-.‘(l _ y)‘
1=0

c=[l o1 o

1465



hi N. A)V
n(z, y) = Z (,')(2N—L—k+1—i>

iI=SN—~L—k+1
zi(l _ z)n—iyLV—L-k-b-l—i(l _ y)—1V+L+k—1+i

L+k—=1 ,_. N
H i _ n—i_L+k—1—i
ZO: <i)<L+k—1—i)’(1 S

(1 = y) N ket

k=2 N-L

Now we can find the coefficients a; so that the stop-band
energy of the filter H(z,y) is minimum in the least-squares
sense.

E, = / H(z, y)ds (13)
D,

where the area of integration is the stopband of the filter.
For diamond-shaped filters the area is triangle.

E,=c P cT. (14)

Because of the half-band property there is no need to in-
clude the passband error. Here wi, = wi, = w., since the
filter is quadrantally symmetric and »(z, y) = v(sin®(w /2),
sin?(w2/2)). The element pmn , m,n=1,--* ;N—L+1, of
the matrix P is the integral of the outer product

pmn=/ o7 (m)(w, THw,—w)-v(n)(w, T+we—w)dw. (15)

The eigenvector, corresponding to the minimum eigenvalue
of the positive-definite matrix P is the solution.
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Fig. 4 Frequency responses of the regular PR filter pair Ho
and Hi, having sharp frequency responses.

3.2. Filters with rectangular support

In 2-D signal processing either z; or z3 is much more expen-
sive than the other. We can assume that z) represents line
memory and is much more expensive than z2. Therefore we
can save memory if we make the support of the filter rect-
angular with N; < N,. Note that any attempt to design
the filter bank using transformation is doomed to failure.
The first step is to design the filter Ho having rectangular
support and zeros at (=, #) [9]. The second step is to obtain
H, by (10).
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Fig. 5 Frequency responses of Ho (5 x 7) and Hy (9 x 13).

3.3. Filters with hexagonally-shaped frequency re-
sponse

Another major difference between 1-D and 2-D multirate
digital filters is that in the 2-D case we can have several
filter passbands for the same downsampling matrix. This
has been pointed out in [1}, but this fact is not exploited in
any of the previously available design techniques. In other
words, for the same two-channel filter bank, assuming the
same downsampling matrix, the diamond-shaped passband
is not the only possible passband! Another choice would be
the hexagonal shape. (This is different from 4-channel filter
banks with hexagonally-symmetric filters [§]). Naturally we
require a zero of arbitrary high order, specified in advance,
at the point (m, 7). Again the procedure consists of two
steps. First, Ho is designed as a a half-band filter with
hexagonally-shaped frequency response {10]. Then H is
derived using (10).

Fig. 6 Frequency responses of Ho (9 x 15) and H; (17 x 29)
having hexagonally-shaped frequency responses.

4. 2-D FOUR-CHANNEL FILTER BANKS

In the four-channel case the downsampling matrix has de-
terminant equal to 4 and can be factored into two other ma-
trices: the first represents separable subsampling and the
second represents the quincuncial subsampling. First a one-
dimensional filter bank is used, and then a two-dimensional
filter bank for quincuncial downsampling. The result is a
four-channel filter bank where hexagonal downsampling is
performed. Thus we must design two PR filter banks, which
we already did in the previous sections. Note that the 2-D
filter bank could be composed of filters having square, rect-
angular or hexagonal support of the impulse response. We
give an example where the filters have rectangular support.
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Fig. 7 Frequency responses of the four equivalent filters
of the four-channel filter bank. The lowpass and highpass
filters of the 1-D filter bank are of length 7 and 13 and
the filters of the 2-D filter bank are 7 x 7 and 13 x 13,
respectively.

5. 3-D FILTER BANKS

There are two important special cases: face-centered (FO)
downsampling and body-centered (BC) downsampling.

5.1. 3-D two-channel filter banks

To achieve PR, first aliasing is avoided by specifying

G0(51122:53) = H1(—21,"52,—:3) (15)
Gi(z1,22,23) = —Ho(~z1, =22, ~23), (17)

and second
H' (21, 22.23) = 0.5+ 0 Hy (21,22, %) (18)

H{“(Zl,zz,:s) -25 --2H(3Y(:1,:2,23)Hév, (19)

Again the Bernstein polynomial provides a solution with
maximum number of vanishing moments:

1 N[N
Hé"(:u:z,:s):iﬁzz Z 9i,j,k(i><j)

i=0 j=0 k=0

k
1+ :;1)2(1\/-,;)(1 — )L 4 o)A, (20)

(V)= s sy -y

where g; ;2 =1 fori+j+4& < N and g jx = 0.5 when
i+j+k=N. H, is obtained again from (10). When M =
N the analysis and synthesis filters have equal numbers of
vanishing moments. In a similar way, as for the 2-D case,
the support of the impulse response can have the shape of
a parallelepiped. The extension to the N-dimensional case
is now straightforward.

5.2. 3-D four-channel filter banks

The PR conditions are more lengthy and are not included
here. The BC and FC type of downsampling are related in
much the same way as the hexagonal and quincunx down-
sampling in the 2-D case. We can construct the filter bank
as a cascade connection of two 2-channel filter banks.

6. CONCLUSIONS

In this paper regular multidimensional perfect reconstruc-
tion filter banks are studied. Several cases, which are im-
portant for applications, are considered. All filters in this
paper have linear phase and an arbitrarily high number
of vanishing moments. The method, presented here is the
only one, that is characterized by square or cubic support.
An efficient implementation of the filter bank exists, which
preserves the PR property even when the finite-word-length
effects are considered [5].

A much more detailed description will be presented in
another publication.
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