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ABSTRACT

We consider the problem of adaptively optimizing a
two-channel lossless FIR filter bank, which finds ap-
plication in subband coding or wavelet signal analysis.
Instead of using a gradient descent procedure—with
its inherent problem of possible convergence to local
minima—we consider two eigenstructure algorithms.
Both algorithms feature a priori bounds on the output
error variance at any convergent point, and based on
simulations lead to solutions that lie acceptably close
to a global minimum point of an output error cost func-
tion.

1. INTRODUCTION

The role of lossless filter banks in wavelet or subband
signal analysis is by now well recognized [6]. The basic
two-channel maximally decimated filter bank is shown
in Figure 1, comprising M rotation angles if the filter
length is M.

A common problem in many applications is to syn-
thesize a filter bank in the form of Figure 1, such that
the variance of the output y;(n) is “small,” possibly
minimized with respect to some criterion. If the spec-
tral density of the input signal prior to decimation is
available, then the design problem is essentially deter-
ministic, and solutions are easily approached [4].

In real-time applications, adaptive designs for the
rotation angles §x(n) may form an attractive alterna-
tive to costly off-line optimization methods. The most
obvious approach is to use a gradient descent procedure
applied to the cost function E[y?(n)]; adaptive algo-
rithm design parallels [5] closely, leading to order M?
computations per time sample. An inherent drawback
of such an approach is that the cost function E[y2(n)]
is nonquadratic in the rotation angles §;, such that lo-
cal minima may result. Although the global minimum
will certainly lead to the “best” solution, local minima
can yield suboptimal performance.
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Avoiding local minima requires either global search
methods, or adaptation algorithms that do not follow
the negative gradient of the cost function E[y3(n)].
The latter possibility is explored in this paper, leading
to two algorithms of order M complexity. Both algo-
rithms seek to embed E[y%(n)] as the extremal eigen-
value of a covariance matrix; if successful, a priori
bounds on E{yZ(n)] after convergence may be devel-
oped, versus the filter length M. Simulations are in-
cluded to illustrate asymptotic performance.

2. PROBLEM STRUCTURE

We begin with the two-channel lossless FIR, filter of
Figure 1, using M rotation angles © = [6y,...,0].
This system may be described as

[x(n+1)] _ [A(e) B(@)] [x@)], (1)

y(n) | [C(©) D(©)] [u(n)
e .
£q(o)
where x(-) = [z1("),...,zm—1(-)]" is the state vector,
u(n) = [::;E:g] is the input vector, and y(n) = [g;gzg]

is the output vector. The mput vector derives from a
scalar process by way of subsampling, i.e.,

u1(n) = u(2n), uz(n) = u(2n — 1).

We assume that {u(-)} is a zero mean, stationary second
order process.

The matrix Q(0) in (1) is the cascade of rotations,
and so is always orthogonal. This implies that the over-
all transfer matrix V(2), as in

] =ve um]
is para-unitary, i.e.,

V)V )=V ) V(z) =1, forallz,
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irrespective of the rotation angles © = {#;}. A stan-
dard objective is to adjust the rotation angles according
to the input signal so as to force E[y2(n)] to be “small”.

Let us introduce the input spectral density matrix

Su(z) = Z Elu(n)ul(n—-k)]z"F, |z| =1L

k==00

Since {u(-)} derives from a scalar process {u(-)} by way
of subsampling, one may show [3] that

_ Se z) So z
Su(z) = [2'1.5('0(2) Segzg

in which
Se(2) =+ +raz®+roz+rotroz  +raz72 4.
So(2) = 4r32?+rz+r+raz- 4 rgz72 4. ..

are the polyphase components from the input spectral
density function prior to subsampling:

S(z) = E re z % with ry = E[u(n) u(n—k)].

k=—o00

In the same way, the output power spectral density is

> Ely(n)y'(n—k)]z7*

k=—o00

Sy(2)

Se(z)  So(2)
V(z) [z'ISo(z) Se(2)

Remark: If S,(z) vanishes, i.e., 7y = 0 for k odd, then
Su(2) = Se(2) Iz, so that

Sy(2) = Se() V() VI(z7) = Se(2) I

as well. This case gives, in particular,

Se(e¥) dw = o, (2)

-7

Bl = o

irrespective of which para-unitary V(z) we use. Ac-
cordingly, if S,(2) is negligible compared to rg, the cost
function E[y2(n)] versus O is fairly flat, and reduces to
a constant function rg whenever S,(z) vanishes. This
simple fact will be exploited in Section 4.

3. FIRST ALGORITHM

Instead of using a gradient descent on the cost function
E[y3(n)], consider the algorithm
0, (n+l) 9, (n) |
. . +
=] e [
Orr(n+1) O (n)
(3)

in which T = diag[y;, ..., yam] with

ym(n) =1, 7(n) = 7e41(n) cos fe(n).

The recursion (3) is closely related to one proposed
earlier in rational subspace estimation [2].

For slow adaptation, the convergence properties of
this algorithm are weakly linked with an associated dif-
ferential equation of the form

2=t s{[H | wwle} @

in which the right-hand side expectation is evaluated
for constant parameters ©. The result varies with ©,
which thus defines a function of @ which drives the
differential d®/dt. A given point in the © parame-
ter space is, for slow adaptation, a convergent point in
mean of (3) if and only if this same value of © is an
attractive stationary point of the differential equation
(4).

In order to understand the stationary points of this
algorithm, introduce the covariance matrix

o}

(@) & g [X] W o)
If we partition Q(©) from (1) into the form

u(n)
_ [ Qi(®) |} M rows
Q)= [ q:2(9) ] } 1 row

then

p{ [tV mo

A stationary point of the algorithm, say ©,, is attained
if and only if the column vector K(©.)q4(©.) is or-
thogonal to the M rows of Q;(0.), i.e.,

K(6.) a3(0.) = A q3(0.). ()
The eigenvalue A is simply
A = q2(0.) K(0.) 43(0.) = Ely3(n)]-

In fact, we have:

e} = Q.(0) K(©) 4}(6).

Property 1. At any convergent point (in mean) of
algorithm (3),

E[yg(n)] = Amin[K(0.)] < Apr41[R]

where R is the input autocorrelation matrix

To ™1 T2 TaM -1

™ L] 1 ToM -2

R = r2 ry To ToM-3
r2M-1 TaM-2 T2M-3 - To
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For the first equality, one may show that, because
Q(©) may be permuted to an orthogonal Hessenberg
matrix, the rows of Q;(©) generate the derivatives of

q2(0):
5‘12(9)/391
['©)Qi(e) = :
0q2(0) /00y

The differential equation (4) then appears related to a
Rayleigh quotient iteration, and the identical argument
used in {2] shows that, at any convergent point, the
eigenvalue A from (5) must correspond to the smallest
eigenvalue of the covariance matrix K(0..).

Although K(©) varies with the rotation angles ©,
a uniform bound may be shown for its eigenvalues. To
verify, it suffices to note that

M-1
K(©) = g g ‘g‘ AOB RCHO).
é;(e)

Since A(©) and B(O) are extracted from an orthogonal
matrix Q(0), it is easy to check that C*(0)(C(6) =
Irr41 for all ©. Accordingly, the Poincaré separation
theorem [1] shows that, for all ©,

M[K®©)] < M[R], k=1,2,..., M+l

where we assume the eigenvalues are set in descend-
ing order. We then observe that A,,;,[K(©.)] is just
Anm +1[K(©.)], to obtain the final bound of Property 1.

One may easily find inputs for which the algorithm
(3) cannot converge. For if the polyphase component
So(z) of the input spectral density is negligible com-
pared to ro, then E[y3(n)] ~ ro for all ©. But Apr4:[R]
may, according to the “even” spectral density function
chosen, be considerably smaller than rg. Property 1
then cannot apply. We remark that, in this case, the
error surface is quite flat, such that little coding gain
is available anyway.

4. SECOND ALGORITHM

Since the even-indexed correlation terms r,x make no
contribution to E[y%(n)], we develop an alternate algo-
rithm which uses only the odd-indexed terms rap4 1.
Let R be the autocorrelation matrix obtained by
modulating the scalar process {u(-)} by (=1)*:

u(2n) uy(n)
—u(2n—1) —us(n)
R=F u(2n=2) (1t — g ur(n—1) | ]t

—u(2n-3) —uz(n—1)

We can then see that

R. = i[R+R]
R, = 1[R-R]

are the matrices built from the even- and odd-indexed
parts, respectively, of the input correlation coefficients.
If, for example, M = 2, then we would have

ro 0 rm 0 0 r 0 r3

_ 0 To 0 2 _ ™ 0 ™ 0
Re - ro 0: To 0 Ro - 0 ™ 0 ™
0 T2 0 Ty r3 0 ™ 0

Property 2. If A is an eigenvalue of R, so is —A.

For if we set £ = R, 7, then negating each even-
indexed component of 7 is equivalent to negating each
odd-indexed component of {. Now choose 7 as an eigen-
vector of R,; the remaining steps follow easily. o

Consider now applying the modulated input to the
same lossless filter bank, as depicted in Figure 2. With
hatted accents absorbed throughout, we see that

K(©) = C(®)RC'(O).
This allows us to introduce
K,(0) £ 1 [K(©) - K(9)] = C() R, C'(®),

in which only the odd-indexed terms of the input auto-
correlation intervene. This suggest the following adap-
tation algorithm:

O(n+l) = e(n)-gr(e) (6)
< (o[]S

The same supporting arguments for Property 1 show
that, at any convergent point ©, of this algorithm,

K,(0.) a5(0.) = Ar4+1[Ko(6,)] g4(©4),

at which point

%(E[yg(n)]—E[gg(n)]) = Am+1[Ko(©.)]
< Au+[Ro).

From Property 2, the eigenvalues A1, ..., Apr of R,
are positive, while the eigenvalues Apr41, ..., Aoy are
negative. Accordingly, Aar+1[K,(©)] is also negative.

We can note next that 1 (E[y2(n)] + E[§3(n)]) de-
pends only on the even-indexed correlation terms of
the input. It may thus be reduced to an integral of the
form (2), giving the value rq. Solving for E[yZ(n)] then
yields:
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Property 3. At any convergent point of algorithm

(6) ’

Eg(n)] = 1o+ Amin[Ko(©4)]
< ro+ Am+1[Ro] = ro — Am[Ro].

Since both algorithms (3) and (8) are seeking ex-
tremal eigenequations, the convergence speed is limited
by the eigenvalue separation of K(©) or K,(©). Well
separated eigenvalues lead to rapid convergence, while
poorly separated eigenvalues lead to slow convergence.
By a simple extension of Property 2, the matrix K,(©)
will in general have better eigenvalue separation than
K(©), which in simulations leads to more rapid con-
vergence of algorithm (6) compared to (3).

5. SIMULATION RESULTS

The input signal {u(-)} was obtained from the output

of the filter
-0.3 1.05
poles { 0.75 £ j0.5809  zeros { -0.2
0.9 + 70.4472

-0.5 £ j0.8307

when driven by white noise, normalized to yield o = 1.
Choosing M = 4, the global minimum of E[y3(n)]
was found at

¢ 0.5704

9 04755 | . . .
0; =1 _o2115| &ving E[yi(n)] = 0.0219
04 —-0.1556

The a priori bound for the first algorithm (3) is
E[yZ(n)] < As[R] = 0.0760

The algorithm exhibited a unique convergent point at

61 0.6521

9 0.4580 | . . ,
92 = | _o1875| &ing Elyi(n)] = 0.0228
04 —0.1298

For the second algorithm (6), the a priori bound is
far more conservative:

E[y2(n)] < ro — Aa[R,] = 0.8998

The convergent point is nonetheless quite satisfactory:

6, 0.6318

7 0.4529 . y
92 =1 _p 2981 giving E[y3(n)] = 0.0237
04 —0.1185

Both algorithms have, for this example, found an ac-
ceptable neighborhood of the global minimum.
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6. CONCLUDING REMARKS

Two alternasive algorithms were presented for adaptive
filter bank optimization in multirate processing. The
complexity of either algorithm is order M computa-
tions per iteration, yielding an improvement over the
order M? complexity which would accompany a gradi-
ent descent approach.

Both algorithms, when convergent, yield a prior:
bounds on E[y3(n)] in terms of the input signal eigen-
structure, although simulations indicate that these
bounds are sometimes conservative. :
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Figure 1: Two-channel lossless FIR filter bank.
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Figure 2: Modulated filter bank.




